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Mesurer avec précision la dynamique des graphes de terrainest une tâche difficile, car les propriétés observées peuvent
être biaisées pour différentes raisons, en particulierle fait que la période de mesure soit finie. Dans ce papier, nous
introduisons une méthodologie générale qui nous permetde savoir si la fenêtre d’observation est suffisamment longue
pour caractériser une propriété donnée dans n’importequel système dynamique.

Nous appliquons cette méthodologie à l’étude des durées de sessions et des durées de vie des fichiers sur deux jeux
de données P2P. Nous montrons que le comportement des propriétés est différent : pour les durées de sessions, notre
méthodologie nous permet de caractériser avec précision la forme de leur distribution. Par contre, pour les duréesde
vie des fichiers, nous montrons que cette propriété ne peutpas être caractérisée, soit parce qu’elle n’est pas stationnaire,
soit parce que la durée de notre mesure est trop courte.

1 Introduction
Many systems are naturally dynamic. For instance in the internet, routers,AS and/or links between them are
created or deleted [?]; in peer-to-peer (P2P) networks users join or leave the system [?, ?, ?] and exchange
different files at different times. In all these cases, understanding the dynamics of the system is a key issue.
However, accurately measuring these dynamics is a difficulttask. In particular, the fact that the observation
window is necessarily finite induces a bias for property characterization [?, ?]. Though this bias tends to
decrease when the observation window length increases, it is difficult to quantify it in practice, or know
whether it is negligible or not.

In this paper, we introduce a new methodology that allows to rigorously determine the minimum obser-
vation time required to characterize a stationary propertyin real-world dynamic systems. This methodology
is different and complementary to other methodologies existing in the literature [?, ?, ?], and has two main
advantages. First, it allows to determine if the observation window was long enough for a rigorous charac-
terization. Second, it can be applied to any property characterizing the dynamics of a system. To illustrate
its relevance, we apply it to the study of session lengths andfiles’ life duration in two different P2P systems.

2 Methodology
Suppose we start observing a dynamic graph at a timet, for a durationl . We denote byWt,l this observation
window. We are faced with two problems if we want to characterize the graph’s dynamics from the obser-
vation ofWt,l . First, l must be long enough forWt,l to berepresentative. Second, even if it is representative,
the fact thatl is finitestill induces a bias for property characterization. Indeed, events occurring beforet or
after t + l are not observed, which prevents from characterizing accurately some quantities. An important
point to observe is that the longer the measurement period, the smaller the bias induced.
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Our methodology addresses these two issues at the same time.Intuitively, it aims at deciding if the
measurement periodWt,l is long enough to characterize a given propertyP, i.e. if the bias induced by its
finiteness on the observed property is negligible. If the windowWt,l is long enough, then if we use a longer
windowWt,l+x, the observed property does not change:P(Wt,l ) = P(Wt,l+x). In order to know if a given
window is long enough, we use windows of increasing lengthW0,l1,W0,l2, ...W0,ln, with l1 < l2 < ... < ln. By
studying how the observed propertyP(W0,l1),P(W0,l2), ...P(W0,ln) evolves as a function ofl , we determine
if it is correctly evaluated or not.

Finally, an important point is that characterizing a property P only makes sense if it is stationary, i.e. if
P does not evolve while the measurement is under progress. Notice however that if it is not stationary, our
methodology will not be able to provide a characterization:the observed propertyP will not become stable
when the observation window lengthl increases. If it does become stable, this means both thatWt,l is long
enough, and thatP is stationary. Notice that, depending on the property studied, other types of bias can
occur, see for instance [?], including biases coming from the identification of users and their sessions. We
will also rigorously take this into account, see Section??.

Here, most of the properties we study are complementary cumulative distributions, i.e. for each valuek,
Pk is the fraction of all observations values which are larger than or equal tok.

To study how an observed distributionP evolves with the length of the observation window, we will
first plot the observed distributionsP(Wt,l ) for different values ofl . In order to confirm more formally the
visual observations, we will also study a statistical indicator which quantifies how close two distributionsP
andQ are to each other: theMonge-Kantorovich distance, or M-K distance [?] compares two normalized
cumulative (complementary or not) distributionsP andQ. It is equal to the mean of the distance between
the two distributions:MK(P,Q) = (∑k |Pk−Qk|)/kmax.

We use this indicator to study how the observed distributionP(Wt,l ) evolves: we compute the M-K
distance betweenP(W0,l ) (with different values ofl ) andP(W0,lmax), wherelmax is the length of the longest
observation window for this dataset, and plot this as a function of l . Following [?], we also study the mean
and the standard deviation ofP(W0,l ) as a function ofl .

3 Data

In order to show the relevance of our methodology, we use two datasets: thequeriesdataset which is a
capture of theUDP traffic of a largeeDonkeyserver [?]. It consists of the queries made by users (for lists
of files matching certain keywords, or for providers for a given file), and of the server’s answers to these
queries. The measurement lasted for 10 weeks which represents 1 billion messages, with 89 million peers
and 275 million files involved. Theloginsdataset consists in a trace of the login and logout of peers onthe
eDonkeynetwork [?]. It contains more than 200 millions of connections by more than 14 millions of peers,
over a period of 27 days. The two datasets are therefore complementary.

4 Users’ session lengths

4.1 Definition of a session

We do not formally know when user sessions begin or end in thequeriesdataset, because there is no notion
of session in theUDP eDonkeyprotocol. Instead, users make stand-alone queries and receive answers from
the server. We therefore have to infer sessions from these queries.

It is natural to consider that two consecutive queries made by a same user belong to the same session
(whether they are for a same file or not) if the time elapsed between them is short, and belong to two
different sessions if it is long. The question is then to find an appropriate threshold for distinguishing
between these two cases. Based on the study of the inter-query time distribution (not presented here), we
have chosen to use a threshold of 10800 seconds, i.e. 3 hours.
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4.2 Characterization of session lengths

We now apply our methodology to the study of the session length distributionsS, by studyingS(W0,l ) for
different values ofl .
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Figure 1: Complementary cumulative distributions of
S(W0,l ) for different observation windows lengths in log-
lin scale, for thequeriesdataset.
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Figure 2: Complementary cumulative distributions of
S(W0,l ) for observation windows lengthsl = 1 week and
l = 10 weeks in lin-log scale, for thequeriesdataset.

Figure?? shows the complementary cumulative distributionS(W0,l) for different values ofl , up to l =
10 weeks, for thequeriesdataset. The shapes of these distributions are similar, with a small fraction of
sessions with length smaller than 2000 s, and an approximately linear shape between 2000 s and 100000 s.
However, whenl ≤ 1 day, the distributions exhibit a clear cut-off. This is notthe case anymore forl ≥ 4
days: the tail of the distribution flattens after a bend occurring close to 100000 s (∼ 28 hours), and we
observe a small fraction ofextremevalues after this bend. For observation windows larger thanfour days,
the shape of the distribution does not seem to evolve anymore: the distributions corresponding tol = 1
week andl = 10 weeks (presented in the inset) are very similar to each other and to the one obtained for
l = 4 days.
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Figure 3: MK(S(W0,l ), S(W0,lmax
)) as a

function of l , for thequeriesdataset.

One must be however careful when driving conclusions from
a visual examination. Indeed, if we observe the same plot as the
inset of Figure?? but with a linear scale on thex-axis and a loga-
rithmic scale on they-axis (see Figure??), the distributions seem
visually strongly different from each other. However, the distri-
butions are different only for less than 1% of the values, which
are values after the bend in Figure?? and areextremevalues.
The fact that the extreme values change whenl increase shows
that they cannot be characterized with our methodology, andwe
leave their study for further work.

To confirm these observations, we study MK(S(W0,l), S(W0,lmax)) as a function ofl , presented in Fig-
ure ??. The values observed tend to decrease (with fluctuations) until the observation window reaches
approximately 150 hours (6 days and 6 hours). After this, thevalue of the M-K distance becomes very
small: this shows that the corresponding distributions arevery close to each other.

We also studied the standard deviation and the mean ofS(W0,l ) as a function ofl (not presented here).
We observe that the mean becomes stable oncel reaches approximately 1 week, at the same time as the
M-K distance. This confirms that an observation window of oneweek is long enough to accurately estimate
the distribution. The standard deviation, however, does not seem to converge as the observation window
length increases, confirming that the distribution cannot be fully characterized. This is consistent with the
distinction between the normal part of the distribution andextreme values.

Figure?? shows the complementary cumulative distributionS(W0,l) for different values ofl , up tol = 3
weeks, for thelogins dataset. We can see that the shape of these distributions aresimilar, and get closer
to each other asl increases. However, when we compare these distributions with the M-K distance (see
Figure??), the values obtained tend to decrease linearly which meansthat the distributions change at a
constant rate. The values obtained for the mean and the standard deviation also do not stabilize. Therefore,
we can not fully characterize this distribution. We howeverhave confidence that the true shape of the
distribution is not far from the one we observed.
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Figure 4: Complementary cumulative distributions of
S(W0,l ) for different observation windows lengths, for the
loginsdataset.
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Figure 5:MK(S(W0,l ), S(W0,lmax
)) as a function ofl , for

the loginsdataset

5 Files’ lifetime
We considered two different definitions for a files’ lifetimeF . The first one is the same as for users’
sessions lengths: we use a threshold and consider that a file is not present in the system if there is no
consecutive queries for this file separated by less than thisthreshold. The second definition consists in
considering the time interval between the first and the last query for a given file. In both cases, the shape of
distributionsF(W0,l ) (not presented here) evolves strongly withl . We therefore conclude that this property
cannot be characterized. The question which arises is whether this is because this property is intrinsically
not stationary or because our measurement period is too short to be able to characterize it.

6 Conclusion
In this paper we introduced an empirical methodology for deciding when the bias induced by the finiteness
of observation windows in dynamic systems becomes negligible. To illustrate the relevance of this approach,
we applied it to the study of sessions lengths and files’ life duration in two different datasets.

We have shown that we can characterize some properties, but not all. When a property can’t be charac-
terized, our methodology doesn’t allow to determine if the observation window shall be increased or not
since we don’t know the stationarity of the property itself.It is interesting to note that, for a same dataset,
some properties can be accurately characterized, and others not.
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