Communities in evolving networks: definitions, detections
and analysis techniques

Thomas Aynaud?, Jean-Loup Guillaume?®, Qinna Wang®, Eric Fleury®

“LIP6 — CNRS — Université Pierre et Marie Curie
4 place Jussieu
75005 Paris, France
firstname.lastname@lip6.fr
Yaddresse de Qinna

Abstract

Complex networks can often be divided in dense sub-networks called com-
munities. These communities are crucial in understanding the underlying
structure of these networks and may have applications in data mining or
visualisation for instance. We expose here a survey of recent advances in
the definition, the detection and the analysis of these communities in the
particular case of evolving networks.

Keywords: Community, evolving network, complex network, tracking,
multi-slice

1. Introduction

Real world complex systems are very often composed of several interact-
ing objects. These interactions can be modeled by a network whose nodes
are the objects themselves, linked together if they do interact. For exam-
ple, the web is a network of web pages connected through hyperlinks and
the brain is a network of neurons connected through synapses. It has been
shown that, even if these networks represent drastically different objects,
they share similar properties. For instance, the distances are often low and
they behave locally almost like cliques.

Understanding the underlying structure of these interaction networks
may have a major impact in the understanding of the systems they model
and one classic way to describe this structure is to consider it as composed of
several communities. A community is intuitively a group of nodes sharing
something like a group of friends in a social network or a group of web
pages dealing with the same subject for instance. Formalising the definition

Preprint submitted to Computer Networks March 9, 2011

t ' t+1 ' t+2 ' t+3 ' t+4

Figure 1: Snapshot graphs

of communities and finding them efficiently is a difficult task and many
algorithms have been proposed in the last decade. Communities are often
defined using the network topology as groups of nodes with many links
inside the groups but a few links between them. Then, finding communities
is similar at looking for a partition of the nodes that maximises a quality
function which captures this idea of dense groups. One such quality function
widely used is the modularity[1]. Other definitions have been proposed like
the Clique Percolation Model or the various statistical models. Readers can
refer to the surveys [2, 3, 4] for more details. Nowadays, although several
definitions still exist, detecting communities in networks can be done really
efficiently and algorithms produce very interesting results. However, most
studies focus on static networks and the usual approach is to collect data
during a long period and then to aggregate all these date to create a large
static network. By doing this, many information are lost since real data are
always evolving: pages appear or are updated constantly on the web, people
start new relationships, etc. Thus, recent researchs have been conducted to
investigate the case of communities in evolving networks.

An evolving network is often defined as a sequence of static networks,
each of them representing the state of the network at different timestamps
(see figure 1). Since each snapshot is a static graph, the first approach to
compute communities on an evolving network is to use a classical algorithm
on each snapshot more or less independently. The approaches in this direc-
tion are described more precisely in Section 2. Using static algorithms in
evolving networks triggers some complex issues that will also be described
in Section 2. To circumvent these issues, some algorithms directly suited
for dynamic networks have been proposed. They are described in Section 3.
Another related issue concerns incremental algorithms: instead of studying
a given dynamic network, such approches consider that data arrive as a
continuous stream. One typical case is a search engine that wants to adapt

its results everytime new pages are discovered but does not want to recom-
pute the whole community decomposition. These specific algorithms are
explained in Section 4. Finally, we present in Section 5 some results which
have been obtained with analysis techniques of evolving communities.

2. Using static algorithms on several snapshots

As the problem of community detection is well known on static graphs, it
is natural to rely on already studied solutions for the evolving case. There-
fore, many attempts have been made to use static algorithms on dynamic
networks: for each timestep, a partition of the nodes is computed and the
main issue is then to characterise the evolution of the communities: what
happened to a community between the two timesteps. Indeed, a community
may merge with another one, split or disappear for example. When we try to
identity some common parts between two partitions, we are trying to solve
a matching problem. In the following, we will also use the term of track-
ing when we are trying to characterize the evolution of given community.
Figure 2 presents such a matching.

One underlying issue is related to the stability of static algorithms. In-
deed they are often non deterministic and few modifications, or even no
modifications, of the input network may lead to many changes in the re-
sulting community partition. This is validated in [5] where the authors
compare three classical community detection algorithms on different evolv-
ing network and show that they are not stable at all. Partitions between
two consecutive timesteps are compared using a partition edit distance that
counts the number of nodes that must to be moved to match one partition
to the other (more details in Section 5.1). There is regularly more than 10%
of the nodes that change of community even after a very small modification
of the network (one node removed). Thus, the communities vary more than
the network and performing a matching between the partitions of two con-
secutive time stamps is very hard since we cannot distinguish between the
modifications due to the evolution and the ones due to the instability of the
algorithm itself. A stabilisation of the Louvain algorithm for modularity op-
timisation is proposed which achieves high decomposition quality with very
good stability.

2.1. Partitions matching using set theory

The first intuitive idea to perform the matching between partitions is to
use set theory and rules or methods to decide whether to sets of different
partitions are similar or not. For example, if two communities of successive

t t+1 t+2

Figure 2: Three snapshot of a given evolving graph with a fixed matching between the
communities of different time steps.

snapshots share many nodes, they are related. The main problem is that
given two partitions, one can find many different valid matchings between
these partitions. This is illustrated in Figure 3. Therefore the matching
problem can be rephrased as the maximization of a quality function that
tells whether or not a matching is good.

partition at time t

[}
(o]
[(e}
©
]
g
o1
o
=
(0]
nd
-

Simple evolution More complex evolution Split of one community
and one apparition

Figure 3: The matching problem

The first attempt to solve the matching problem in the context of evolv-
ing communities is [6]. The authors study a co-authoring network using the
size of the intersection of communities: two communities at successive time
steps are matched if they share enough nodes, i.e if the size of their inter-
section is high. More precisely, the match value between two communities
is defined as:

match(C,C") = min <|Cﬁ ¢l len O/|>

cr e
This value ranges between 0 and 1. The bigger the intersection is, i.e.

the closer the two communities are, the higher it is: a value of 1 means that
they are the same and 0 that they are disjoint. The authors derive from this

the match of a community C' at time ¢ as the community C’ at time ¢ + 1
which maximises this value and they use a classical hierarchical clustering to
study the CliteSeer database. Due to the instability of the community detec-
tion algorithm used, many communities disappear or are strongly modified
between consecutive timesteps. Thus, communities are initially impossible
to follow since the changes are caused by the algorithm and not by true
changes in the dataset. This issue is solved by considering only the sta-
ble communities which are defined as communities which still exist when
the input network is slightly modified. Such communities are called natural
communities and while the process eliminates many communities, it allows
a first study of the few surviving ones. The algorithm is validated by observ-
ing the evolution of communities on the CiteSeer database of some already
known phenomena in science like the apparition of the add-hoc networks
research community.

This matching methodology has been generalised in [7] where the authors
define many similar rules to deal with other cases of communities evolution:
merge, split, appearance and disappearance (see Figure 3). Given a com-
munity C' at time ¢, the authors define match(C') as the community at time
t + 1 whose intersection with C' is the largest if and only if this intersection
is larger than a given threshold. If there no community at time ¢ 4+ 1 whose
intersection is larger than the threshold then match(C) = @. Then they use
a set of rules to track communities:

e C € P, becomes C' € Pyyq if C' = match(C) and VC" € P, # C,C" #
match(C").

e (' € P, splits into multiple communities C1, Co, ..., Cy € Py if Vi, C;N
C' is large enough and (C; UCy U ... U Cy) N C is large enough.

e C € P, has merged with others communities into C’ € Py if C' =
match(C) and 37 € P, # C,C" = match(Z).

e (' € P, disappears if none of the cases above hold.

e (' € P,y appears if VC € Py, C" # match(C).

These rules are quite natural and are easily understandable, but are not
very satisfactory. Indeed, the term “large enough” is not a formal definition,
the threshold is hard to choose, there exists many normalisations of the
intersections size: for instance we could decide that two communities are
similar when 70% of one is inside the other or when they share 80% of the

nodes. This framework, is called MONIC and many variations of the set of
rules have been proposed in [8, 9, 10, 11, 12]. Anyway, finding a consensus
on a minimal set of rules seems impossible and the various parameters are
generally not easy to choose.

In [13], the authors use the same kind of solutions but instead of com-
puting the match between communities they propose to follow communities
using few important nodes that they called ore nodes. The idea is that core
nodes should be more stable than border nodes that might belong to several
overlapping communities and which create noise when then move. They
thus select for each community some representative core nodes nodes and
track them between different timesteps. The limitations of the community
tracking still hold and furthermore we have to define core nodes. In [13] the
core nodes are nodes v which verify >, ,..; hpours degree(v) —degree(n) > 0
whereas in [14] they are nodes whose degree is higher than a given k. There
are many centrality measures which all want to classify nodes relatively to
their importance and chosing among those is difficult and may depends on
targeted application.

2.2. Using the community detection algorithm to perform the matching

Instead of computing the matching after having computed the commu-
nities, it is possible in some contexts to perform the matching during the
community detection. This is done in [15], where the authors use a spe-
cific community definition and an associated algorithm on the union of the
networks at time t and at time ¢ + 1. Their definition is such that each
community of the union network contains both communities of the network
at time ¢ and at time ¢ + 1. Therefore, communities at time ¢ + 1 that are
grouped with communities at time ¢ on the union graph are considered to
be evolution of them (see figure 4). The authors validate this approach to
study a mobile phone network and a co-authorship network.

However, this specific technique relies on the definition of communities
and a strong hypothesis must be fulfilled by the community detection al-
gorithm: if links are added to the network, then the communities can only
grow, merge or remain unchanged. This property ensures that detected
communities on the union network contain full communities of both times-
tamps ¢t and £+ 1 and not just fraction of communities which would make the
matching impossible. This property is barely fulfilled and suppose a very
constrained definition of what a community is (overlapping cliques in [15]).
This technique also requires parameters and rules to deal with the cases
where several communities of different snapshots are grouped (merge and
split).

Graph at time t Union graph

\ "'

Community on the union graph

Graph at time t+1 which contains the circle community
and the gray community

\ the circles become the gray community and
S > the squares become the white

Figure 4: Using the union graph to compute evolution

2.8. Community evolution network

Another way to use a community detection algorithm to perform the
matching is to build a temporal network representing the relations between
communities at each time step. The communities are then computed on
this network and it therefore gives communities that span across several
snapshots. Thus, such algorithm are decomposed in two phases: first, each
snapshot is decomposed in static communities and then these static commu-
nities are joined in temporal communities that span over several time steps.
The static communities for each snapshot are sometimes called community
instances to distinguish them from community (see Figure 5).

In [16], community instances are computed with a classical divisive hier-
archical clustering [1] at each timestep. Then, the authors build an evolution
graph where nodes are the community instances and links join community
instances of different timesteps with a weight based on the MONIC match-
ing and a threshold based on the time distance. Finally, this evolution
graph between the communities instances is also decomposed with the same
algorithm and the decomposition found on this graph define the final com-
munities. Since they contain community instances of several timestep, these
communities span over given period and a given node of the initial graph
can belong to different communities at each timestep. Thus, the authors
propose a metric to decide the involvement of a node to a community on the
evolution graph.

In [17] the authors use the same kind of two steps decomposition. They
first compute community instances which are then packed in a tensor. In-
stances are then weighted to indicate how important they are to the con-
sidered final community but also to take into account the importance of a
community at a given timestep. Finally, they obtain a function to opti-
mise to obtain fuzzy communities that span across several timesteps as they

Final communities

Community instances

Figure 5: An example of evolution graph with community instances (nodes) and temporal
communities (in grey).

are the combination of community instances of several timesteps. They fi-
nally propose an process based on constrained optimization to optimize the
function and validate with the classical NEC-blog dataset.

In [18], the authors use a similar framework but redefine communities
using several assumptions: it should be a group of people seeing each other
often, seeing other people rarely and that does not change a lot during its
lifetime. Moreover, member of a community tend not to change of commu-
nity frequently. With given community instances (or groups), the authors
propose a quality function to assign nodes and instance communities to com-
munities. Morevoer, nodes may change of community during the time and
this association is penalised with several costs that are summed:

e « is the individual cost when a node changes of community between two
successive timestamps. This reflects that one node must not change
too often.

e (3 is the group cost when a node and its group are not in the same
communities at a given time.

Finally, they add a colour cost which is proportional, for each node, to the
number of communities it belongs to during the whole time so as to ensure
that one particular node does not belong to many communities. Optimising
this function is NP-Complete, but algorithms with proved approximation
factors are proposed in [19].

2.4. Conclusion

None of the above mentionned techniques seems perfect. The two main
problems are first the instability of the algorithms and when problem is
solved or neglected, classical technique based on the size of the intersec-
tion of communities needs many rules and parameters which are difficult to
choose. As approaches using static algorithms are limited, many different
algorithms have proposed to use directly the temporal information during
the community detection and not afterwards.

3. Using temporal information directly to find better communities

3.1. Modification of the quality function

Since classical community detection are based on static quality functions,
modularity for instance, a solution can be to modify such quality functions
to integrate evolution.

The first attempt was presented in [20] which splits the quality function
in two terms: a part for the quality of the current snapshot and a part to
ensure stability:

Q= anapshot + O‘Qstabilityv

where Qspapshot 1s a static quality function, Qsiapitity is a term which eval-
uates the distance of the new partition with the precedent and « is a pa-
rameter that characterises the importance given to the stability. This new
quality function allows to obtain a series of more interesting clusterings and
to reduce the number of artifacts caused by the optimisation algorithm. The
authors then use this new quality function to extend some algorithms like
k-means and hierarchical agglomerative algorithm.

This idea has been extended in [21] in which the authors propose to use
an overall quality term instead of a stability term. In this case the partition
found at time ¢ does not have to be close to the partition at time ¢ — 1 but
have to be a good partition at time ¢ and a fairly good partition at time
t—1.

Rather than just considering two consecutive time steps, an extension of
this stabilization, presented in [22] proposes to find only one partition that
is always good. To do this, the average quality over time is optimised. If
the quality function is the modularity and if the network does not change
too much, it is possible to achieve on average a quality which is very close
to the optimal one. As there is only one partition, there is no stability
issue. But this does not means that there is no evolution as the nodes may
not exist at all timestamps. In this cas, the evolution is more inside the

communities than between them, giving different insight than traditional
community tracking.

The stability problem has also been considered in [23]. Instead of mod-
ifying the quality function to integrate smoothness, the authors compute
communities at time £ — 1 and if two nodes are in the same community at
time ¢ — 1 and are also connected at ¢, then the weight of the link between
them is increased or decreased of a given factor « to increase the smooth-
ness of a modularity optimisation algorithm. If the algorithm considers the
weight as a similarity factor, then the weight is increased, while if the weight
is a distance, it is decreased.

8.2. Computing directly with models

Another advance has been done in [24, 25] in which the authors formu-
late the quality function as a non negative matrix factorisation that jointly
optimise the quality and the stability of the communities. Then, they pro-
pose algorithms to optimise this function. They test their framework, called
FacetNet, using an extension of the modularity suited for overlapping com-
munities and use it to study several dataset such as the dblp dataset, the
NEC-blog dataset and some synthetic ones. Their framework is one of the
most general since it handles both overlapping and evolving communities. It
is also one of the few that do not separate the detection of the communities
and the detection of the evolution (i.e. the matching problem).

In [26], the authors study a dynamic modification of the stochastic bloc
model to generate graphs and obtain insight on the structure. The stochastic
block model generates a network by adding node one by one. When a node
is added, it is assigned to a community following a given probability m and
then links are added following a probability that depends on the community
of the two extremities. They change the community assignment to depend
on the previous assignment and finally evaluate the most likely value for the
various parameters. Those parameters represent the community assignment
and give insight in the dynamic. They propose ways to estimate the pa-
rameters and show that the results are good by computing the modularity
at each timestep and comparing results with ground truth via the mutual
information.

3.8. Temporal sliced graphs

The temporal information can also be coded in the graph itself. Given
several snapshots of an evolving network, they may be placed side by side
in one temporal graph. So, nodes that exist at several timestamps appear
several times in this graph. Each snapshot is a slice of the dynamic network.

10

Classical link

t t+1

Figure 6: Example of a temporal graph: the same network is shown side by side at two
timestamps and communities are computed on this union graph.

Then temporal links between nodes in different slices can be added, typically
between a node at time ¢ and the same node at time ¢+ 1. The result is one
network with two kind of links: the links that really exist at some moment
in the evolution of the network and the links between slices (see Figure 6).

The first attempt is [27] where the authors build a temporal sliced graph
and then use the classical community detection algorithm Walktrap [28] on
it. The communities on this graph contain thus nodes of various timestamps
and are consequently communities over time. The matching problem is
automatically solved since communities span over timestamps.

This idea of placing several snapshots side by side is extended in [29]
where they propose a more general way to connect slices. They also propose
a modification of the modularity integrating directly the slices and use it to
detect multi-scale communities and dynamic communities.

8.4. Conclusion

Several ideas have been proposed to study dynamic communities using
snapshots or more complicated ideas. One major lack is now validation tools.
Indeed there exist almost consensual quality functions for static network that
people can use to evaluate their algorithms and some tests networks that
are randomly generated, see [30] for instance or real dataset with known
ground truth, see [31] for instance. However, such general quality functions
or validation tools do not exist for evolving networks. One new random
model based on the static one of [30] and one based on [1] are proposed
respectively in [12] and in [23] but they are not yet widely used.

11

4. Incremental/Online algorithms

Incremental or online algorithms aim to process data stream instead of
a full snapshot. The input is thus a sequence of events on the network and
the algorithm tries to maintain a fairly good community decomposition by
updating its current decomposition instead of computing one from scratch.
This is useful in case of real time monitoring of huge dataset such as the
Internet or the web for instance. Furthermore if updates are computed ef-
ficiently, then incremental algorithms can achieve better performances than
computing communities on each snapshot independently.

In [32], the authors propose an incremental algorithm to compute com-
munities using eigenvalues of the network. By just considering the changes,
they are able to compute communities ten time faster on the new snapshot
than by considering the whole network with a small quality cost. They
hence modify the spectral clustering algorithm to incrementally find the
eigenvalues and eigenvectors.

A similar kind of algorithm is proposed in [33]. They first define a
distance between nodes of the network and then the neighbourhood of a
node as the topological balls of radius e. They consider only the nodes
whose neighbourhood size is bigger than a given threshold considered as
core vertex. Nodes who belong to the neighbourhood of a core vertex are
border vertex, and others are noise vertex. The communities are then the
transitive union of neighbourhoods that share nodes. This defines a static
community detection algorithm similar to the classic DBSCAN clustering
algorithm and they propose techniques to update the neighbourhoods and
the community when nodes or links are added or removed.

Two modularity optimisation, the Louvain Algorithm and the Fast Greedy
algorithm, are modified in [34] to handle small modifications. Both algo-
rithms are heuristics that greedily change nodes of community and merge
communities to optimise the modularity. Considering that they already have
a partition, the authors apply similar heuristics but they fix nodes not af-
fected by the network change in their previous community. Then, only a few
nodes, depending on the event, are movable, and the algorithm is therefore
must faster than computing on the whole network.

Finally, another incremental algorithm is proposed in [35]. Instead of
reacting to events, the authors encode the input network in a network be-
tween communities: each community corresponds to two nodes, linked with
a weight of the sum of the intra links weight. There is a link between two
communities whose weight is the number of links connecting them. This

12

results in a much smaller network than the original network. Then, when a
change occurs, the authors detect which communities will be modified and
split them. They can then use a classic algorithm on this network and, since
the network is really smaller, they can achieve very good performances if
there are few modifications. This method is also very general and can be
applied to many algorithms since only the input network is modified.

5. Analysis of the evolution

Analysing the communities in evolving networks raises new issues. In-
deed, new properties directly related to the evolution emerge, like the life
expectancy or the growth speed of communities for instance. In general
there is no real consensus on the interesting metrics and many of the defi-
nitions are quite similar, with only some modifications of the normalisation
process for example.

5.1. Stability and event detection

Evaluating the distance between two clustering is already a well known
problem and it has been deeply analyzed outside of the context of evolving
communities. Many metrics such as the Rand index, the mutual information,
and many more have been defined and compared. We redirect the reader
to [] for more details and we will only focus on some results related to the
stability for evolving communities.

5.1.1. Characterising changes

Measuring the stability is important but another issue consists in mea-
suring how fast the events occurs and how do the communities change.
In [36] the authors study a series of four snapshots of the web crawled from
1999 to 2002 and define some parameters at a given timestep to describe
how quickly a community evolves, see table 1.

Similar values are defined in [7] to study the dynamic of the communities
tracked with the MONIC framework. The authors propose the survival ratio
(the proportion of communities at time ¢ that survive at time ¢ + 1), the
absorption ratio (the proportion of communities that are absorbed) and the
pass-forward ratio (the sum of both the survival and absorption ratio) to
analyse the communities inside the ACM library.

The modifications within a community are related to its popularity de-
fined in [9] as the number of nodes joining the community minus the number
of nodes leaving it. In the dblp dataset, it appears that the XML community

13

Name Definition | Representation

growth rate %:lc‘ evolution speed of the size of the community

novelty % number of new nodes in the community

disappearance % number of disappearing nodes in the com-

rate munity

merge rate W number of absorbed nodes from other com-
munities by merging

split rate % number of splits from ¢

Table 1: Properties proposed in [36] with ¢ a community at time ¢, ¢’ the corresponding
community at time ¢t + d¢, C the union of all the communities at time ¢ and C’ the union
of all the communities at time ¢ 4+ .

starts being very popular in 2000 according to this metric which corresponds
to a known historical event and tend to prove the interest of the measure.

5.1.2. Detecting events and major changes

The detection of events is another stability related issue. The objective
here is to be able to distinguish between the normal transformations and
the abnormal ones.

In [37], the authors compute communities on several snapshots and fol-
low the minimum description length principle: any regularity in a given set
of data can be used to compress the data, i.e. to describe it using fewer
symbols than needed to describe the data literally. A community is then a
grouping of nodes which allows a good compression of the graph: it min-
imises the description length. They build a list of consecutive description of
communities. If a community decomposition is close to the previous ones,
then it can be effectively compressed with them and the compressed size
does not change a lot. Conversely, if the new decomposition vary a lot from
the previous, adding it to the list will not be a lot more effective than com-
pressing it separately. The authors therefore use this principle to detect
changes in the community structure rather than describing it.

5.2. Node evolution in communities

An orthogonal issue to the evaluation of the communities evolution con-
sists in studying how nodes move from community to community. To study
this evolution, [9] defines some metrics as the sociability or the influence of a
node. The sociability is defined as the number of communities it belongs to
during its whole life and the authors use this metric to make link prediction

14

Figure 7: Example of mapping between communities (Extrait de leur papier pour le
moment, il faut en refaire une)

within the dblp dataset and some clinical test results and it appears to be
very efficient.

They also define the influence of a node, which should characterise if a
node make other nodes join or leave a community when it does. Thus, let’s
n be a node, companions be the set of nodes that join or leave a community
when n does and m the number of join and leave of a community that n
does. Then, the influence of n is : in fluence(n) = W' This makes
followers of influential nodes being influential, so they add a few rules to
curb this effect: let’s n’ be the node which has the more interaction with
n, if the degree of n’ is higher than the degree of n or the influence of n’ is
higher than the influence of n, then the influence of n is set to 0. It excludes
followers, but only the high influence nodes have an interesting value, and
it disallows to influent node to interact a lot together.

Finally, [38] proposes a visualisation tool to study community evolution.
Their alluvial diagrams highlights structural changes between two consec-
utive timesteps by representing communities as blocks and drawing flows
between them (see figure 7).

5.3. Real case studies

Finally, a few real case studies have been done which propose insights
and explanations on various community behaviours.

First, [39] analyses the general characteristics of a blog network from
1999 to 2002 and study the behaviour of intra community links. They use
the notion of burstiness defined by Kleinberg in [40]. The intra community
links tend to appear more and more as burst (a large amount of links quickly

15

added together) and there are more and more communities which also tend
to grow. This result is historical and not general as their dataset corresponds
to the apparition of blog-space but it is a valuable insight about the blog
emergence.

In [41], the authors study two datasets. The first one is extracted from
the science repository dblp and the second from the news and communication
website livejournal. They do not detect communities on them, but use
ground knowledge to build a kind of clustering. In the dblp dataset, authors
are grouped if they attend the same conferences and in livejournal, users can
themselves join discussion groups. Authors are wondering if there are some
structural reasons that lead a node to join a group and why some groups
are growing. To explain this, they define many features of a node and they
build a decision tree according to these features. In livejournal, the most
discriminating feature is the proportion of friends in community who are
friends with each others. They build similar trees to predict community
growth. They also wonder whether people bring subjects inside groups or
if the subjects appear in groups and people join such groups afterwards to
discuss the subjects.

Finally, [15] studies the life expectancy of communities, depending on
their size and stability. The life expectancy is the time between the appear-
ance of a community and the time when it disappears. They use their clique
percolation method to detect communities and their evolution on a network
of co-authorship and on a network of phone call and discover that there are
two cases, depending on the size of the communities. They show that small
communities need an high stability (the £ parameter defined at section ?7?)
to survive and that big communities need a smaller stability to survive. In
other terms, the small ones have to be very stable if they want to survive
longer, admitting very few changes, whereas big communities must adapt
themselves to survive and cannot rely on a very strong core of members.

References

[1] M. E. J. Newman, M. Girvan, Finding and evaluating community
structure in networks, Physical Review E 69 (2004) 26113.

[2] M. A. Porter, P. J. Mucha, J.-p. Onnela, Communities in Networks,
World Wide Web Internet And Web Information Systems (?7777) 0-26.

[3] S. E. Schaeffer, Graph clustering, Computer Science Review 1 (2007)
27-64.

16

[4]
[5]

[6]

S. Fortunato, Community detection in graphs, Physics Reports (2009).

T. Aynaud, J.-L. Guillaume, Static community detection algorithms for
evolving networks, in: Wireless Networks, volume 2010, pp. 508-514.

J. Hopcroft, O. Khan, B. Kulis, B. Selman, Tracking evolving commu-
nities in large linked networks, in: National Academy of Sciences of the
United States of America, volume 101, National Acad Sciences, 2004,
p. 5249.

M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, R. Schult, Monic: mod-
eling and monitoring cluster transitions, in: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM New York, NY, USA, 2006, pp. 706-711.

T. Falkowski, M. Spiliopoulou, J. Bartelheimer, Community dynamics
mining, in: Proceedings of 14th European Conference on Information
Systems (ECIS 2006), Citeseer, Goteborg, 2006.

S. Asur, S. Parthasarathy, D. Ucar, An event-based framework for char-
acterizing the evolutionary behavior of interaction graphs, in: Proceed-
ings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2007, p. 921.

M. Oliveira, J. Gama, Bipartite graphs for monitoring clusters transi-
tions, Advances in Intelligent Data Analysis IX M (2010) 114-124.

M. Oliveira, J. Gama, Understanding Clusters Evolution, in: Workshop
on Ubiquitous Data Mining, volume D, pp. 16 — 20.

D. Greene, D. Doyle, Tracking the evolution of communities in dynamic
social networks, in: Advances in Social Networks Analysis and Mining
(ASONAM), volume 2010, IEEE, 2010, pp. 1-13.

Y. Wang, B. Wu, N. Du, Community Evolution of Social Network:
Feature, Algorithm and Model, Science And Technology (2008).

M. Beiré, J. Busch, Visualizing communities in dynamic networks, in:
Latin American Workshop on Dynamic Networks, volume 1.

G. Palla, A.-L. Barabasi, T. Vicsek, Quantifying social group evolution,
Nature 446 (2007) 664—667.

17

[16]

[17]

[22]

[23]

[24]

[25]

T. Falkowski, M. Spiliopoulou, Users in volatile communities: Study-
ing active participation and community evolution, Lecture Notes in
Computer Science 4511 (2007) 47.

Y. Chi, S. Zhu, X. Song, J. Tatemura, B. L. Tseng, Structural and
temporal analysis of the blogosphere through community factorization,
Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD 07 (2007) 163.

C. Tantipathananandh, T. Berger-Wolf, D. Kempe, A framework for
community identification in dynamic social networks, Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discov-
ery and data mining - KDD ’07 (2007) 717.

C. Tantipathananandh, T. Berger-Wolf, Constant-factor approximation
algorithms for identifying dynamic communities, in: Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining, volume Id, ACM, 2009, pp. 827-836.

R. Kumar, A. Tomkins, D. Chakrabarti, Evolutionary clustering, in:
In Proc. of the 12th ACM SIGKDD Conference.

X. Song, Y. Chi, B. L. Tseng, D. Zhou, K. Hino, Evolutionary spectral
clustering by incorporating temporal smoothness, in: Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, ACM New York, NY, USA, 2007, pp. 153-162.

T. Aynaud, J. Guillaume, Long range community detection, in: Latin
American Workshop on Dynamic Networks.

M. Kim, J. Han, A particle-and-density based evolutionary clustering
method for dynamic networks, Proceedings of the VLDB Endowment
2 (2009) 622-633.

B. L. Tseng, Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, Facetnet: a
framework for analyzing communities and their evolutions in dynamic
networks, Social Networks (2008) 685-694.

B. L. Tseng, Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, Analyzing
communities and their evolutions in dynamic social networks, ACM
Transactions on Knowledge Discovery from Data 3 (2009) 1-31.

18

[26]

[27]

[28]

31]

32]

T. Yang, Y. Chi, S. Zhu, Y. Gong, R. Jin, A Bayesian Approach
Toward Finding Communities and Their Evolutions in Dynamics Social
Networks, 7 (?7?77) 990-1001.

M. B. Jdidia, C. Robardet, E. Fleury, Communities detection and
analysis of their dynamics in collaborative networks., in: ICDIM, IEEE,
2007, pp. 744-749.

P. Pons, M. Latapy, Computing communities in large networks using
random walks, Journal of Graph Algorithms and Applications 10 (2006)
191-218.

P. Mucha, T. Richardson, K. Macon, M. Porter, Community structure
in time-dependent, multiscale, and multiplex networks, science 876
(2010) 10-13.

A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for
testing community detection algorithms, Physical Review E 93046110
(2008).

W. Zachary, An information flow model for conflict and fission in small
groups, Journal of Anthropological Research 33 (1977) 452-473.

H. Ning, W. Xu, Y. Chi, Y. Gong, T. Huang, Incremental spectral
clustering with application to monitoring of evolving blog communities,
In STAM Int. Conf. on Data Mining (2007).

T. Falkowski, A. Barth, M. Spiliopoulou, Studying community dynam-
ics with an incremental graph mining algorithm, in: Proc. of the 14 th
Americas Conference on Information Systems (AMCIS 2008), pp. 1-11.

R. Gorke, P. Maillard, C. Staudt, Modularity-Driven Clustering of
Dynamic Graphs, Experimental Algorithms C1 (2010).

T. Dinh, I. Shin, N. Thai, M. Thai, A General Approach for Modules
Identification in Evolving Networks, Dynamics of Information 40 (2010)
83-100.

M. Toyoda, M. Kitsuregawa, Extracting evolution of web communities
from a series of web archives, in: Proceedings of the fourteenth ACM
conference on Hypertext and hypermedia, ACM New York, NY, USA,
2003, pp. 28-37.

19

[37]

J. Sun, C. Faloutsos, S. Papadimitriou, P. Yu, Graphscope: parameter-
free mining of large time-evolving graphs, in: Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM New York, NY, USA, 2007, pp. 687-696.

M. Rosvall, Mapping change in large networks, PLoS One (2010) 1-9.

R. Kumar, J. Novak, P. Raghavan, A. Tomkins, On the bursty evolution
of blogspace, World Wide Web 8 (2005) 159-178.

J. Kleinberg, Bursty and Hierarchical Structure in Streams, Data
Mining and Knowledge Discovery 7 (2003) 373 — 397.

L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan, Group formation
in large social networks: membership, growth, and evolution, Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining (2006) 54.

20

