
THESE DE DOCTORAT DE
L’UNIVERSITE PIERRE ET MARIE CURIE

Spécialité

SYSTÈMES INFORMATIQUES

Présentée par

M. OUSSAMA ALLALI

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE PIERRE ET MARIE CURIE

Structure et dynamique des graphes de terrain bipartis :
liens internes et prédiction de liens

Soutenance : le 24 Juin 2011

Jury :

Eric FLEURY Rapporteur Professeur, ENS de Lyon

Céline ROUVEIROL Rapporteur Professeur, Université Paris-Nord

Patrick GALLINARI Examinateur Professeur, Université Pierre et Marie Curie

Anne-Marie KERMARREC Examinateur Directeur de Recherche INRIA, Rennes

Christophe PRIEUR Examinateur Mâıtre de Conférences, Université Paris-Diderot

Matthieu LATAPY Co-directeur Directeur de Recherche CNRS

Clémence MAGNIEN Co-directeur Chargée de Recherche CNRS

DOCTOR OF SCIENCE THESIS
PIERRE AND MARIE CURIE UNIVERSITY

Specialization

COMPUTER SCIENCE

presented by

M. OUSSAMA ALLALI

Submitted for the degree of

DOCTOR OF SCIENCE FROM PIERRE AND MARIE CURIE
UNIVERSITY

Structure and dynamics of bipartite complex networks:

internal links and link prediction

Defence: June, 24th 2011

Committee:

Eric FLEURY Referee Professor, ENS of Lyon

Céline ROUVEIROL Referee Professor, University Paris-Nord

Patrick GALLINARI Examiner Professor, University Pierre and Marie Curie

Anne-Marie KERMARREC Examiner Researcher (DR) INRIA, Rennes

Christophe PRIEUR Examiner Associate Professor, University Paris-Diderot

Matthieu LATAPY Co-advisor Researcher (DR) CNRS

Clémence MAGNIEN Co-advisor Researcher (CR) CNRS

Abstract

Many real-world complex networks, like actor-movie or file-provider relations, have a
bipartite nature and are best modeled as bipartite graphs, where nodes are divided into
two sets with links between nodes of different sets only. However, there is currently a lack of
methods to analyze properly such graphs as most existing measures and methods are suited
to classical graphs. A common but limited approach consists in deriving classical graphs
(called projections) from the underlying bipartite structure, though it causes important
loss of information and data storage issues. We introduce in this thesis internal links and
pairs as a new notion useful for such analysis: it gives insights on the information lost
by projecting the bipartite graph. We illustrate the relevance of these concepts on several
real-world datasets and illustrate how it enables to discriminate behaviors among various
cases, when we compare them to a benchmark of random networks. Then, we show that
we can draw benefit from this concept for both modeling complex networks and storing
them in a compact format.

Many bipartite real-world complex networks are dynamic: they evolve during time, with
node and link additions and removals. Predicting links that will appear in them is one of the
main approaches to understand their dynamics. Only few works address the bipartite case,
though, despite its high practical interest and the specific challenges it raises. We propose
in this thesis a link prediction method based on internal links. We thoroughly describe the
method and its variations, and experimentally compare it to a basic collaborative filtering
approach. We present results obtained for a typical practical case. We reach the conclusion
that our method performs very well, and we study in details how its parameters may
influence the obtained results.

Keywords:

complex networks, bipartite graphs, projection, internal links, graph storage, graph
analysis, graph dynamics, link prediction.

1

Table of contents

1 Introduction 7

2 Bipartite complex networks 11
2.1 Introduction . 12
2.2 Basic definitions . 13
2.3 Projection . 13
2.4 Bipartite statistics . 14

2.4.1 Degree distribution . 15
2.4.2 Clustering coefficient . 15

2.4.2.1 Clustering coefficient of classical graphs 15
2.4.2.2 Clustering coefficient of bipartite graphs 16

2.4.3 Redundancy . 18
2.5 Weighted projections . 19
2.6 Random graphs . 21

2.6.1 Random classical graphs . 21
2.6.1.1 Classical graphs with prescribed degree distribution 21
2.6.1.2 Classical graphs with preferential attachment 22

2.6.2 Random bipartite graphs . 22
2.6.2.1 Bipartite graphs with prescribed degree distribution . . . 22
2.6.2.2 Bipartite graphs with preferential attachment 23

2.7 Dynamics of bipartite graphs . 23
2.8 Conclusion . 24

3 Datasets and their properties 27
3.1 Introduction . 28
3.2 Datasets and basic statistics . 28
3.3 Degrees statistics . 29
3.4 Clustering statistics . 32

3

3.4.1 Clustering distributions . 32

3.4.2 Clustering correlations . 36

3.5 Redundancy statistics . 37

3.5.1 Redundancy distributions . 38

3.5.2 Redundancy correlations . 39

3.6 Conclusion . 40

4 Internal links and pairs 43

4.1 Introduction . 44

4.2 Internal pairs and links . 44

4.3 Analysis of real-world cases . 46

4.3.1 Amount of internal links and pairs 46

4.3.2 Distribution of internal links among nodes 48

4.3.3 Correlation of internal links with node degrees 49

4.4 Removing internal links . 50

4.5 Dynamics of real-world cases . 52

4.5.1 Impact of the future period . 52

4.5.2 Impact of the reference period . 53

4.6 Conclusion . 54

5 Link prediction in bipartite graphs 57

5.1 Introduction . 58

5.2 Related work . 58

5.3 The bipartite link prediction problem . 60

5.4 Bipartite prediction methods . 61

5.4.1 Internal link prediction . 61

5.4.2 Collaborative filtering prediction 66

5.5 Experimental setup . 68

5.5.1 P2P-files dataset . 68

5.5.2 Parameters for prediction methods 69

5.6 Experimental results . 70

5.6.1 Impact of the prediction period duration 71

5.6.2 Impact of the reference period duration 73

5.6.3 Impact of the weight function . 74

5.7 Delicious-tags and Flickr-comments datasets 74

5.8 Conclusion . 76

6 Conclusion 79

A A peer-to-peer measurement 83
A.1 Introduction . 83
A.2 Related work . 83

A.2.1 Measurement at server level . 84
A.2.2 Measurement at peer level . 84
A.2.3 Measurement by client sending queries 84
A.2.4 Measurement at ISP level . 84

A.3 Measurement of eDonkey Activity with Distributed Honeypots 85
A.3.1 Manager. 85
A.3.2 Honeypots. 85
A.3.3 Privacy concerns . 87

A.4 Experiments . 88
A.4.1 Impact of measurement duration 89
A.4.2 Random content vs no content. 90
A.4.3 Impact of the number of honeypots. 94
A.4.4 Impact of the number of files. 94

A.5 Conclusion. 96

B Résumé en français 99
B.1 Introduction . 99
B.2 graphes de terrain bipartis . 100

B.2.1 Projection. 101
B.2.2 Projection valueé . 102

B.3 Jeu de données et statistiques de bases . 102
B.4 Liens et paires internes . 103

B.4.1 Quantité de liens et de paires internes 104
B.4.2 Corrélation entre le nombre de liens internes et le degré des nœuds 106

B.5 Prédiction de liens dans les graphes bipartis 107
B.5.1 La prédiction de liens dans les graphes bipartis 107
B.5.2 La prédiction de liens internes . 109
B.5.3 Résultats expérimentaux . 110

B.6 Conclusion . 110
B.7 Annexe–Mesure de l’activité pair-à-pair. 112

References 115

Chapter 1
Introduction

One may model various objects coming from the real world with graphs. We can cite

many examples among computer, social, biological, or linguistic networks, like internet

maps, web graphs, data exchanges, authoring, protein interactions or occurrence networks.

It appeared recently that most of these objects share nontrivial statistical properties [22,77,

136]. This has showed that it is indeed relevant to consider these objects as a coherent group.

For this reason, one designates them by the general term real-world complex networks.

Understanding how real-world complex networks are structured, how they evolve over

time and what are the events that may occur within them, are key questions of the field.

It is structured into four research areas: measurement, analysis, modeling and algorithmic

of these networks.

Real-world complex networks are not directly available: collecting data about them re-

quires the use of measurement procedures. In most case, these procedures lead to partial

views obtained using various and often intricate exploration methods. In general, the mea-

surement procedure cannot capture the whole graph, because of its size and various other

constraints. A bias may in addition be introduced by the exploration method. It is crucial

to study the influence this may have on the results, and try to correct such bias.

Analysis of a real-word complex networks aims at describing their structure. This is done

using statistical notions and/or structural ones, aiming at capturing the key features of a

graph. This topic has led to an important stream of studies [9,22,30,39,46,58,59,135,136].

The definition of such notions is however not trivial, as well as the evaluation of their

relevance and the interpretation of the obtained description. One method is to compare the

behaviors of real-world complex networks to random ones. Notions which make real-world

networks different from random networks indicate a specificity of real-world networks.

7

8

In order to explain the nature of observations, to provide mathematically rigorous re-

sults and to conduct appropriate simulations, it is important to capture the observed pro-

prieties in models of real-world complex networks. Modeling a real-world complex network

basically consists in producing an artificial graph similar to the real one.

Finally, the study of real-world complex networks calls for the design of appropriate

algorithmic methods. Indeed, their size is generally very large, from a few thousands to

a few billions of nodes. Therefore, most classical algorithmic solutions are not applicable

(average distance computation for instance). Therefore, it is not always possible to perform

exact computations on these graphs, and approximations are often necessary. The context

of complex networks also raises new algorithm issues that have not been raised before

(community detection for instance).

In addition, most real-world complex networks are dynamic, i.e. their structure evolves

over time by the addition and/or removal of nodes and/or links. Recently, some works have

studied graphs dynamics. They are mostly in-depth studies of specific cases, for instance

mobile networks [38, 42, 44, 120, 128], peer-to-peer exchange networks [64, 80, 82], internet

topology [76,102,105,106], biological networks [17,110,124,131], citations networks [85], and

various social networks [47,121,125]. Other works have developed general methods, relevant

to the study of any dynamic graph. We can cite methods to manipulate dynamic graphs [36,

73], event detection [65], community detection or evolution [18,104], link prediction [28,67,

87], and some even more general questions [16, 78, 86, 99].

One of the main approaches developed for studying network dynamics is link prediction,

which consists in predicting the links that will probably appear in the future, given a

snapshot of the considered graph at a given time.

Many real-world complex networks actually have a bipartite nature: their nodes may

be separated into two classes, with links between nodes of different classes only. Typical

examples include actor-movie networks [101, 136] where actors are linked to the movies

they played in; authoring networks [94, 95] where authors are linked to the papers they

signed, etc.

In this thesis, we focus on bipartite complex networks, and we follow two directions for

improving the understanding of these objects: we study their structure by introducing new

relevant notions and we study their dynamics using link prediction.

Some notions used in the analysis of classical (non-bipartite) graphs extend directly

to the bipartite case, like for instance the size, density, or degree distribution; they may

therefore be used in this context. For others, the extension does not make any sense in

CHAPTER 1. INTRODUCTION 9

itself. For instance, the notion of clustering coefficient, since it relies on the enumeration

of triangles, does not make sense for bipartite graphs, which cannot contain any triangle.

Although there already exist methods for the analysis of bipartite netwoks [26, 34, 41, 54,

55, 113, 115, 123], much remains to be done in this direction.

Similarly, several works study the problem of link prediction on classical (non-bipartite)

networks [19, 67, 87, 103]. However, their methods are not directly applicable to, or appro-

priate for, bipartite graphs. Another research problem is closely related to link prediction in

bipartite graphs: the recommendation problem [112]. Recommendation systems are used to

suggest items to users, such as products to customers for instance. Notice however that the

two problems are quite different: recommendation aims typically at finding a few products

of interest for each customer; prediction aims at finding as many links as possible that will

appear in the future.

Contribution. The bipartite nature of many real-world complex networks calls for the

development of new, specific notions and methods that would not make sense in the classical

case. In this perspective, we identify a special kind of links that we call internal links, and

propose them as an important notion for analyzing bipartite networks. These links are

very frequent in practice, and we show that associated statistics are fruitful to point out

similarities and differences among real-world complex networks and study their features.

Internal links also have an important role regarding the dynamics of networks. We study

this and propose an approach based on internal links for link prediction in bipartite graphs.

Our method performs very well, much better than a classical recommendation approach.

Moreover, our method is purely structural: it relies on the identification of a specific kind

of links which will probably appear in the future; this gives much insight on the properties

of the underlying dynamics.

This manuscript is organized as follows. Chapter 2 presents a state of the art regarding

notions and methods used for analyzing real-world bipartite complex networks. Chapter 3

describes eight real-world datasets that we use in this manuscript. We use the statistics

and notions presented in Chapter 2 for analyzing these eight datasets. Chapter 4 presents

the notion of internal links and pairs in bipartite graphs, and shows that this notion is

important for analyzing real-world bipartite complex networks [14], and their dynamics.

Chapter 5 builds on the observations made in the previous chapters to propose a new

method for link prediction in bipartite graphs [12, 13]. Chapter 6 presents our conclusions

and some key directions for further work. Appendix A describes a method for measuring

activity in a peer-to-peer system developed during this thesis [11].

10

Chapter 2
Bipartite complex networks

Contents
2.1 Introduction . 12

2.2 Basic definitions . 13

2.3 Projection . 13

2.4 Bipartite statistics . 14

2.4.1 Degree distribution . 15

2.4.2 Clustering coefficient . 15

2.4.3 Redundancy . 18

2.5 Weighted projections . 19

2.6 Random graphs . 21

2.6.1 Random classical graphs . 21

2.6.2 Random bipartite graphs . 22

2.7 Dynamics of bipartite graphs 23

2.8 Conclusion . 24

11

12 2.1. INTRODUCTION

2.1 Introduction

Many real-world complex networks have a natural bipartite structure and may therefore

be modeled as bipartite graphs, i.e. graphs with two sets of nodes, and links only between

nodes in different sets. Typical examples include actor-movie networks [101, 136] where

actors are linked to the movies they played in; authoring networks [94, 95] where authors

are linked to the papers they signed; occurrence networks where the words occurring in a

book are linked to the sentences of the book they appear in [56]; company board networks

where the board members are linked to the companies they lead [27, 114]; peer-to-peer

exchange graphs [57,64,133] where peers are linked to the files they provided/searched for;

on-line shopping networks where clients are linked to the products they bought [89]; etc.

All these real-world complex networks have been studied in various disciplines such

as biology, computer science, social science, marketing, etc. In most of these contexts,

however, the authors transform the bipartite nature of network they study into a classical

(non-bipartite) graph, where two nodes are linked if they have at least one neighbor in

common in the bipartite graph. This process is called projection.

For the examples presented above, some projections are: co-starring networks, where

two actors are linked if they played together in a movie; co-authoring networks, where two

authors are linked if they signed a paper together; peer-to-peer exchange networks, where

two peers are linked together if they have provided/searched for a same data; etc.

The projection approach allows the study of bipartite graphs using the powerful tools

and notions existing for classical graphs. However it implies much loss of information

initially available in the bipartite graphs [79]. For instance, the fact that two authors co-

authored many papers is an important information which is present in a bipartite authoring

graph but not in the projected co-authoring graph.

To avoid these issues, one may use weighted projections in which a weight is associated

to each link [23,24,98]. For instance, in a co-authoring graph the weight may be the number

of co-authored papers. This approach transforms the problem of studying a bipartite graph

into the problem of studying weighted projections, for which much methods exist [23,24,98].

This allows to understand in more details the properties of bipartite graphs. There are

several methods for weighting the links [4,82,117,118], each bringing different information

about the bipartite graph.

Conversely, one may see the properties of the projected graph as consequences of the

projection process itself [62, 63, 101]. Some authors therefore proposed a model based on

bipartite graphs and projection. This approach makes it possible to reveal unexpected

behaviors, meaning that the underlying bipartite structure has nontrivial properties, and

deepening this makes sense.

CHAPTER 2. BIPARTITE COMPLEX NETWORKS 13

Finally, some authors study the bipartite data directly. To do so, they extend the

notions used for classical graphs, and develop new notions designed for bipartite graphs:

overlap [108], clustering [33, 88, 114], centrality [54], redundancy [79] and others [7, 37, 53,

107].

In this chapter, we present the state-of-the-art of notions and methods used for analyz-

ing bipartite graphs, including the notions extended from classical graphs. We first present

the basic bipartite and projection definitions in Sections 2.2 and 2.3. We then present statis-

tics specific to bipartite graphs in Section 2.4. We present in Section 2.5 different methods

for weighting projected graphs. We present the extension of classical random graphs to the

bipartite case in Section 2.6. We finally present the different kinds of dynamics of bipartite

graphs in Section 2.7. We discuss our conclusions in Section 2.8.

2.2 Basic definitions

We give here basic definitions and notations which we use throughout this manuscript.

A classical graph G = (V,E) is defined by a set V of nodes and a set E ⊆ V × V of

links. We denote by N(u) = {v ∈ V, (u, v) ∈ E} the neighborhood of a node u in G. The

number of nodes in N(u) is the degree of u: d(u) = |N(u)|. Note that we consider here

undirected graphs, meaning that there is no distinction between links (u, v) and (v, u).

The basic statistics describing such a graph are its size n = |V | and its number of links

m = |E|. Its average degree is k = 1
n

∑

u∈V d(u) = 2m
n
; its density is δ = 2m

n.(n−1)
, i.e. the

number of links divided by the number of possible links between all pairs of nodes.

A bipartite graph B = (⊥,⊤, L) is defined by a set ⊥ of bottom nodes, a set ⊤ of top

nodes and a set L ⊆ ⊥×⊤ of links. The key point is that links exist only between a node

in ⊥ and one in ⊤. We denote by N(u) = {v ∈ (⊥ ∪ ⊤), (u, v) ∈ L} the neighborhood of

a node u in B. If u ∈ ⊥ then N(u) ⊆ ⊤, and conversely. More generally, given any set of

nodes S ⊆ (⊥ ∪ ⊤), we denote by N(S) its neighborhood: N(S) =
⋃

u∈S N(u).

The basic statistics of bipartite graphs are direct extensions of the ones on classical

graph: n⊥ = |⊥| and n⊤ = |⊤| are the numbers of top and bottom nodes respectively, and

m = |L| is the number of links. The bottom average degree is k⊥ = 1
n⊥

∑

u∈⊥ d(u) = m
n⊥

and the top average degree is k⊤ = 1
n⊤

∑

u∈⊤ d(u) = m
n⊤

. The density is δ = m
n⊥n⊤

.

2.3 Projection

The main approach to study bipartite complex networks consists in turning them into

classical (non-bipartite) graphs through a process called projection. This approach makes

14 2.4. BIPARTITE STATISTICS

it possible to use the powerful tools and notions provided for classical graphs for the study

of bipartite graphs.

The ⊥-projection of B is the graph B⊥ = (⊥, L⊥) in which (u, v) ∈ L⊥ if and only if

u and v have at least one neighbor in common in B: N(u) ∩ N(v) 6= ∅. In other words,

there is a link between u and v in L⊥ if u and v are linked to a same top node in L (see

Figure B.1).

A

B

E

D

C F

A B C D E F

2 3 41

3
4

1

2

Figure 2.1 – An example of a bipartite graph B (center), together with its ⊤-projection
B⊤(left), and its ⊥-projection B⊥(right).

We denote by ⊥(u, v) the sets of links induced by a pair of nodes (u, v) in (⊥ × ⊤):

⊥(u, v) = {(u, w), w ∈ N(v) \ {u}}.

In Figure B.1, for instance,⊥(A, 1) = {(A,B), (A,C)}. Notice that L⊥ =
⋃

(u,v)∈L⊥(u, v):

the links of the ⊥-projection of B are the links induced by all the links of B.

We denote by ⊥v the set of links induced by a node v in ⊤: ⊥v =
⋃

u∈N(v)⊥(u, v).

Each top node v induces in B⊥ a clique between its neighbors in B (see Figure B.1). For

example, all actors who have played in a same movie will be connected with each other in

the projection.

Note that a same link in the projection may be induced by many nodes (for instance

the link (B,C) in the ⊥-projection in Figure B.1 is created by their common neighbors 1

and 2). This is not captured in the projection process.

We denote by N⊥(u) the neighborhood of a node u in B⊥: N⊥(u) = {v ∈ ⊥, (u, v) ∈

L⊥} = N(N(u)).

The ⊤-projection of B, denoted by B⊤, and associated notion, are defined dually.

2.4 Bipartite statistics

We present here the main statistics used for describing directly a bipartite graph without

using the projection.

CHAPTER 2. BIPARTITE COMPLEX NETWORKS 15

2.4.1 Degree distribution

The degree distribution of a classical graph is, for each integer k, the fraction Pk of

nodes of degree k: Pk = |{u∈V :d(u)=k}|
n

. In other words, it is the probability that a randomly

chosen node has degree k.

Two degree distributions can naturally be associated to a bipartite graph. The bottom

degree distribution ⊥k = |{u∈⊥:d(u)=k}|
n⊥

gives the fraction of nodes in ⊥ having degree k,

and the top degree distribution ⊤k = |{u∈⊤:d(u)=k}|
n⊤

gives the fraction of nodes in ⊤ having

degree k.

Degree distributions play a key role in the analysis of graphs. In particular, one makes

in general the distinction between two kinds of degree distributions: homogeneous and

heterogeneous ones.

Homogeneous distributions (such as normal, Gaussian and Poissonian distributions) are

such that the degrees of the nodes are very close to the average degree. This means that

the average degree gives important information: the average degree is meaningful because

it indicates the expected behavior of nodes.

Heterogeneous distributions (such as Zipf and power-law distributions) are such that

there are several orders of magnitude between degrees, and most nodes have a degree very

different from the average degree. Then, the average value gives little information: it is

very different from the degree of most nodes, and randomly chosen nodes will have very

different degrees.

2.4.2 Clustering coefficient

We present here the two classical versions of clustering coefficient and their equivalent

versions in bipartite graphs.

2.4.2.1 Clustering coefficient of classical graphs

The clustering coefficient in classical graphs is a measure of the local density of nodes. It

aims at capturing a notion of overlap: it measures the probability that two nodes are linked

together, provided they have a neighbor in common. In other words, it is the probability

that any two neighbors of any node are linked together. There are two slightly different

versions:

The first one computes the probability, for any given node, that two of its neighbors

are linked together. It is defined for any node u of degree at least 2:

cc•(u) =
|{(v, w) ∈ E s.t v, w ∈ N(u)}|

d(u).(d(u)−1)
2

.

16 2.4. BIPARTITE STATISTICS

The clustering coefficient of the graph itself is the average of this value for all nodes:

cc•(G) =

∑

u∈V, d(u)≥2

cc•(u)

|{u ∈ V, d(u) ≥ 2}|
.

The second notion of clustering coefficient of G (sometimes called transitivity ratio)

applies directly to the whole graph:

cc∨(G) =
3N△

N∨

where N△ denotes the number of triangles, i.e. sets of three nodes with three links in G,

and N∨ denotes the number of connected triples, i.e. sets of three nodes with at least two

links, in G. This notion of clustering is slightly different from the previous one since it gives

the probability, when one chooses two links with one extremity in common, that the two

other extremities are linked together.

2.4.2.2 Clustering coefficient of bipartite graphs

Whereas there are quite direct extensions of the basic statistics to the bipartite case,

the notion of clustering coefficient does not make sense in itself in a bipartite graph. Indeed,

it relies on the enumeration of triangles in the graph, and there can be no triangle in a

bipartite graph.

Both definitions of classical clustering coefficients capture the fact that when two nodes

have something in common (one neighbor) then they are linked together with a probability

much higher than two randomly chosen nodes. Conversely, they capture the fact that when

two nodes are linked together then they probably have neighbors in common. In other

words, they capture correlations between neighborhoods. From this point of view, it is

possible to extend the first notion of clustering coefficient to bipartite graphs [34, 79, 82]

and capture the overlap between the neighborhoods pairs of nodes:

cc•(u, v) =
|N(u) ∩N(v)|

|N(u) ∪N(v)|
.

If u and v have no neighbor in common then cc•(u, v) = 0. If they have the same

neighborhood, then cc•(u, v) = 1. And if their neighborhoods partially overlap then the

values are in the interval]0, 1[, closer to 1 when the overlap is large compared to their

degrees, and inversely. See Figure 2.2 for an illustration.

Capturing the overlap between neighborhoods may however be ambiguous. Suppose

that degrees are heterogeneous in the network, and consider two nodes u and v. If one

CHAPTER 2. BIPARTITE COMPLEX NETWORKS 17

vu vu vu

Figure 2.2 – Examples of bipartite clustering coefficient. For each case we give the values
of Left: 0.33, 0.66 and 0.4. Center: 0.5, 0.66 and 0.66. Right: 0.25, 0.4 and 0.4.

of these nodes has a high degree and the other has not, then cc•(u, v) will necessarily be

small. This will be true even if one of the neighborhoods is entirely included in the other.

This may be captured better using the following definition:

cc•(u, v) =
|N(u) ∩N(v)|

min(N(u), N(v))
.

One may define dually:

cc•(u, v) =
|N(u) ∩N(v)|

max(N(u), N(v))
.

See Figure 2.2 for an illustration. These two notions, called min- and max-clustering,

were introduced first in [82]. The first one emphasizes the fact that small neighborhoods

may intersect significantly large ones; it is equal to 1 whenever one of the neighborhoods

is included in the other. The second one emphasizes on the fact that neighborhoods (both

small or large ones) may overlap very significantly: it is 1 only when the two neighborhoods

are the same and it tends to decreases rapidly if the degree of one of the involved nodes

increases. It captures the fact that nodes with similar degrees have high neighborhood

overlaps.

These definitions of clustering coefficients capture the tendency of two particular nodes

to have large neighborhood overlaps. One may then define the clustering coefficient of one

node as the average of its clustering coefficients with other nodes [79]:

cc•(u) =

∑

v∈N(N(u)) cc•(u, v)

|N(N(u))|
.

The clustering coefficient of all the graph is the average of this value for all nodes:

cc•(B) =

∑

u∈(⊥∪⊤) cc•(u)

n⊥ + n⊤
.

Two correlations may be derived from this definition. The bottom correlation of clus-

tering coefficient with node degree: cc•⊥(k) =
∑

u∈⊥:d(u)=k
cc•(u)

|{u∈⊥:d(u)=k}|
is the average clustering

18 2.4. BIPARTITE STATISTICS

coefficient of all nodes in ⊥ having degree k, and the top one: cc•⊤(k) =
∑

u∈⊤:d(u)=k
cc•(u)

|{u∈⊤:d(u)=k}|
is

the average clustering coefficient of all nodes in ⊤ having degree k.

These correlation make it possible to observe if the value of the clustering coefficient is

related to the degree of nodes. In particular, one may observe if a high (or low) value of

the degree implies a high (or low) value of the clustering coefficient.

The extension of the second notion of classical clustering coefficient is proposed in [114].

It measures the probability that, given four nodes with three links, they actually are con-

nected with four links (all the possible bipartite ones):

ccN(B) =
2N⋊⋉

NN

.

where N⋊⋉ is the number of quadruplets of nodes with four links in B, and NN is the number

of quadruplets of nodes with at least three links.

2.4.3 Redundancy

The redundancy coefficient is a measure of the importance of nodes regarding the

projection process [79].

First notice that links in the ⊥-projection (resp. ⊤) may be induced by several ⊤ nodes

(resp. ⊥ nodes) during the projection, and the role of nodes cannot be distinguished from

one another in the projection. In fact, the links induced by a node may be (all) also induced

by others nodes. Removing such a node from the bipartite graph will only change slightly

(or not at all) the projection. This may be captured by the redundancy coefficient, which

is the fraction of the links induced by u (d(u) ≥ 2) that are also induced by another node

than u:

rc(u) =
|{{v, w} ⊆ N(u), ∃u′ 6= u, (u′, v) ∈ L and (u′, w) ∈ L}|

d(u).(d(u)−1)
2

.

A B C D E F

u

A

B B

A

C C

F

E

D D

E

F

Figure 2.3 – Example of redundancy. From left to right: a bipartite graph, its ⊥-projection,
and the ⊥-projection obtained if the node u is removed. Only two links disappear, leading
to rc(u) = 4

6
= 0.666.

CHAPTER 2. BIPARTITE COMPLEX NETWORKS 19

In other words, the redundancy coefficient of u is the fraction of pairs of neighbors of

u linked to another node than u. In the projection, these nodes would be linked together

even if u were not there, see Figure 2.3. If it is equal to 1 then the projection would be

exactly the same without u; if it is 0 it means that none of its neighbors would be linked

together in the projection.

Here again, we can study the distribution of the redundancy coefficient and its correla-

tion with node degree, which we do not detail here.

2.5 Weighted projections

As explained for instance in [79] and above, B⊥ contains much less information than

B. In particular, the fact that u and v are linked in B⊥ means that they have at least

one neighbor in common in B but says nothing on their number of common neighbors.

Several approaches are used for weighting the links of the ⊥-projection in order to capture

such information. We present the main ones in this section (examples are presented in

Figure 2.4).

CB DA

i kj

A

D

C

B

2

1

1

1

B

D

CA

1/2

1/3

1/3

2/3

B

D

CA 1/3

1

4/31/3

B

D

CA

6

3

2

3

B (B⊥, σ) (B⊥, γ) (B⊥, δ) (B⊥, ρ)

Figure 2.4 – A bipartite graph B (left) and its ⊥-projection with the different weight
functions defined in Section 2.5.

First, the weight of a link (u, v) may be defined as the number of (top) neighbors that

u and v have in common in the bipartite graph, called sum:

σ(u, v) = |N(u) ∩N(v)|.

The σ weight function has been used for instance to estimate the probability of collabora-

tion between authors [93].

Notice that if u and v both have many neighbors, then σ(u, v) will naturally tend to

be high. Conversely, if u and v have only few neighbors but these neighbors are the same,

then σ(u, v) will be low, which does not reflect the fact that the neighborhoods of u and v

are very similar. To capture this, one may use the Jaccard coefficient:

20 2.5. WEIGHTED PROJECTIONS

γ(u, v) =
|N(u) ∩N(v)|

|N(u) ∪N(v)|
.

This quantity has been used for instance in the context of peer-to-peer exchange analysis

to capture similarity between peers [82].

The value of γ(u, v) may however be strongly biased if one of the two nodes has many

neighbors and the other one only few: the value would then be very low, even if all neighbors

of one node are neighbors of the other. To avoid this, variants of the Jaccard coefficient,

overlap and cosine, have been proposed in the literature [117, 118]:

γove(u, v) =
|N(u) ∩N(v)|

min(|N(u)|, |N(v)|)
γcos(u, v) =

|N(u) ∩N(v)|
√

|N(u)| × |N(v)|
.

From this point of view, though, nodes play an unbalanced role: a ⊤-node x has an

influence on the similarity between |N(x)|×(|N(x)|−1)
2

pairs of nodes in the ⊥-projection. When

N(x) is large, this is huge; on the contrary, if a ⊤-node only has two neighbors then it

probably indicates a significant similarity between them. To capture this, one may consider

that each ⊤-node votes for the similarity between its neighbors and that the sum of its votes

is only one (it has only one voice to distribute). This leads to the delta weight function:

δ(u, v) =
∑

x∈N(u)∩N(v)

2

|N(x)| × (|N(x)| − 1)
.

In Figure 2.4, for instance, nodes i and j vote respectively 1
3
and 1 for link (B,C), so

δ(B,C) = 1
3
+ 1. A similar quantity has been used in [4] to capture the similarity between

two home pages as a function of the features they share.

All weight functions above intuitively capture similarity between nodes. One may also

use weight functions to capture other features, like the activity of nodes in the network.

This leads for instance to compute the product of the number of neighbors of u and v in

the bipartite graph [21, 93], called attachment:

ρ(u, v) = |N(u)| × |N(v)|,

which reflects the expectation that u and v may have neighbors in common: if links were

placed at random then the probability that (u, v) is a link would be proportional to ρ(u, v).

All weighting functions presented above are natural and capture relevant informations

about a bipartite graph. Each has its own strengths and weaknesses.

CHAPTER 2. BIPARTITE COMPLEX NETWORKS 21

2.6 Random graphs

Various models have been proposed to generate artificial graphs [10,22,31,51,91,92,96,

137]. One key use of such models is to identify non-trivial features of real-world graphs by

comparing them to null models. To this regard, the most simple and random models are of

highest interest. We present here the case of classical graphs and their equivalent bipartite

models.

2.6.1 Random classical graphs

The basic model of random graphs was introduced by Erdös- Rényi [32, 52]. There are

two variants of the model. The model Gn,p generates a graph with n nodes in which each

of the n.(n−1)
2

possible links exists with a given probability p. The model Gn,m generates a

graph with n nodes and m links chosen at random from the n.(n−1)
2

possible links. The two

models are equivalent if p and m satisfy m = p.n.(n−1)
2

.

It has been shown [10,32,50,97,126,137] that this model does not capture some of the

main features of real-world complex networks. In particular, the obtained graphs have a

clustering coefficient equal to p since the probability that each pair of nodes is connected is

independent of their neighbors. This means that the clustering is small when the average

degree is small (which is the case in practice for most of the graphs we consider). Moreover,

the degree distribution follows a Poisson law: pk = e−λ λk

k!
. This distribution is centered on

the mean value λ = p.n, and all nodes have a degree close to this average value.

2.6.1.1 Classical graphs with prescribed degree distribution

The configuration model [91,92] builds random graphs with prescribed degree distribu-

tion (a power-law for instance). The first step is to generate the degree distribution desired.

It can be explicitly described (distribution of a real network for instance) or implicitly de-

fined (power-law with a given exponent for instance). This allows to construct the degree

sequence, i.e. the degree of each node. The second step consists in assigning to each node

as many connection points as its degree. Finally, one constructs links by choosing random

pairs of connection points and connecting them.

The sum of the degrees must be even to allow the connection of all connection points.

Note that this algorithm may induce multiple links and loops. There are however very few

such links when the graph grows and they are usually neglected in large complex network

studies. One may also use algorithms and techniques proposed in [48,96,132] to avoid them.

22 2.6. RANDOM GRAPHS

2.6.1.2 Classical graphs with preferential attachment

The second main model is based on the preferential attachment principle [22, 51]. The

aim of this model is to simulate a growing graph. For instance in the Web, when a new

Web page is created, it likely connects to a well known Web page rather than a randomly

chosen one. However, the most famous Web pages are those that have more links pointing

to them. Therefore, the pages with the most incoming links will probably acquire more in

the future.

A graph from this model is generated as follows: at each step, a node is added with

links to preexisting nodes chosen with a probability proportional to their degree. This leads

to a degree distribution that follows a power-law with exponent 3. This model has been

studied intensively and is now well known (see [10] for a survey of its properties).

2.6.2 Random bipartite graphs

The purely random model Gn,p may extended to Gn⊥,n⊤,p, a bipartite graph with n⊥

bottom nodes and n⊤ top nodes, each of the n⊥.n⊤ possible links existing with a given

probability p. Equivalently, one may construct such a bipartite graph by choosing m =

p.n⊥.n⊤ links at random (which is an extension of the Gn,m model to Gn⊥,n⊤,m). Like for

classical graphs, though, these simple models have Poisson degree distribution, which does

not fit real-world cases.

2.6.2.1 Bipartite graphs with prescribed degree distribution

Generating a bipartite graph with prescribed degree distributions may be done by

extending the classical configuration mode as follows [90, 101] (see Figure 2.5):

1. generate both top and bottom nodes and assign to each a degree chosen from the

given distributions;

2. create for each node as many connection points as its degree;

3. choose random pairs of top and bottom connection points to create links.

Figure 2.5 – Example of the construction of a random bipartite graph with prescribed
degree distributions.

CHAPTER 2. BIPARTITE COMPLEX NETWORKS 23

This process generates random bipartite graphs uniformly within the set of bipartite

graphs with the given degree distributions. However it cannot be used without taking into

account the following constraint: the number of connection points of top and bottom must

be equal after the second step. This can be achieved in one of the following ways:

– if the distributions are explicitly given, by taking original distributions for instance,

then the constraint is necessarily verified;

– if the distributions are given implicitly then, before sampling the degrees, one must

make sure that the distributions are compatible: the product of the number of nodes

by their average degree must be the same for top and bottom (in practice, we do not

need a strict equality);

– if the two distributions are compatible, and the two sets of degrees experimentally

drawn from these distributions are inconsistent (the sums of the degrees are different)

then, one can drop one top and one bottom node at random and sample their degree

again [90, 101].

Note that, just like with the configuration model, multiple links may appear. Again,

there are however very few such links when the graph is large, and simply ignoring them

generally has no significant impact on the results.

2.6.2.2 Bipartite graphs with preferential attachment

In order to capture a power-law degree distributions in growing bipartite graphs like

for classical graphs, a variant of the preferential attachment has been defined [62, 63]. At

each step:

– add a new top node u, and choose its degree k according to the prescribed (top)

distribution;

– for each k links of node u, add a link to a preexisting bottom node using preferential

attachment (with probability λ), or create a new bottom node (with probability 1−λ)

and connect it to u.

The parameter λ is the overlap ratio, i.e. the proportion of preexisting bottom nodes

to which a new top node is connected.

2.7 Dynamics of bipartite graphs

Most real-world complex networks actually are dynamic: they evolve during time, with

node and link additions and removals. We deal in this thesis with growing graphs only, i.e.

graphs in which there are no node or links removals, only additions. This is very frequent

in practice.

24 2.8. CONCLUSION

Let us define a dynamic (growing) bipartite graph by a set of n timestamped links D =

{(ti, ui, vi), i = 1...n} where ti is the arrival time of link (ui, vi). We define B = (⊥,⊤, L)

as the graph observed from a given instant a to another instant b > a: ⊥ = {u, ∃(t, u, v) ∈

D s.t. a 6 t < b}, ⊤ = {v, ∃(t, u, v) ∈ D s.t. a 6 t < b} and L = {(u, v), ∃(t, u, v) ∈

D s.t. a 6 t < b}. We call B the graph observed during period [a, b[

Now let us consider an instant c > b. This induces a set L′ of links added to B during

period [b, c[: L′ = {(u, v), ∃(t, u, v) ∈ D s.t. b 6 t < c}.

Notice that, even when we focus on growing graphs different kinds of dynamics may

occur, in particular:

– new links may appear with new nodes only. For instance, in the actor-movie bipartite

graph, growth occurs with addition of new movies only, with links to old actors

(existing nodes in B) and to some new actors, playing in a movie for the first time.

No link may appear between two nodes already in B.

– new links may appear between pair of previously existing nodes. For instance, in peer-

to-peer bipartite graph, an existing peer may start to provide a file already provided

by others.

This different types of dynamics call for different approaches for their study. For in-

stance, predicting new links appearing between preexisting nodes is quite different from

predicting new node arrivals, and we will deal with the former problem in Chapter 5.

2.8 Conclusion

We have introduced the methods and the notions most used for analyzing bipartite

graphs. Although other notions have been introduced, most of them are ad hoc and specific

for the case under study, or variants of the ones presented here

Most notions described here are extensions to the bipartite case of the most basic notions

used nowadays to analyze large classical graph. These notions go from the very basics (size,

degree distributions) to more subtle ones (various clustering coefficients, random bipartite

models).

One way to capture the relevance of the notions defined above is to compare their

values on a representative set of real-world cases and on random graphs with the same size

and degree distributions. The idea behind this is that a notion which behaves similarly on

real-world and random networks is just a property of most networks. Instead, one generally

looks for properties which are specific to real-world networks and make then different from

random networks.

Another approach described above consists in transforming a bipartite graph into a

classical one through projection. This approach allows to use the powerful tools developed

CHAPTER 2. BIPARTITE COMPLEX NETWORKS 25

for classical graphs. However it leads to important loss of information. Although this may

be mitigated by the use weighted projection.

The ideal consists in studying graphs directly, without resorting to such tricks. However,

much remains to be done in this direction.

26 2.8. CONCLUSION

Chapter 3
Datasets and their properties

Contents
3.1 Introduction . 28

3.2 Datasets and basic statistics . 28

3.3 Degrees statistics . 29

3.4 Clustering statistics . 32

3.4.1 Clustering distributions . 32

3.4.2 Clustering correlations . 36

3.5 Redundancy statistics . 37

3.5.1 Redundancy distributions . 38

3.5.2 Redundancy correlations . 39

3.6 Conclusion . 40

27

28 3.1. INTRODUCTION

3.1 Introduction

In this chapter, we describe eight real-world bipartite complex networks that we use in

this thesis. We use the statistics and notions described in Chapter 2 for analyzing these eight

examples. In order to complete our analysis, we estimate the relevance of these statistics

by comparing their values on random bipartite graph with the same degree distributions

as our datasets.

We do not detail the way these graphs are obtained. This is explained in the references

that we cite for each case. Let us insist on the fact that our aim here is not to derive

conclusions on these particular networks: we only discuss their representativity of a wide

range of cases.

Also, our aim here is not to discuss in detail the specificities of each statistics used for

analyzing these real-world networks, but to give evidence of the fact that these statistics

have nontrivial behaviors and capture significant information.

We describe the eight real-world networks and their basic features in Section 3.2. Then,

we analyze their degree distributions and correlations (Section 3.3). After that, we study

their clustering coefficients (Section 3.4) and redundancy coefficient (Section 3.5). We fi-

nally present our conclusions in Section 3.6.

3.2 Datasets and basic statistics

We present in this section the datasets we use and their general features. The networks

under consideration all connect people (⊥-nodes) to events or similar interests (⊤-nodes).

We have used the following real-world networks:

Internet Movie Database (imdb www.imdb.com) [22] is an online database of information

related to movies, actors and other visual entertainment. We consider the Imdb-movies

bipartite network where actors connected to the movies they played in. ⊥ is the set of

actors and ⊤ is the set of movies.

Delicious (www.delicious.com) [61] is a social bookmarking web service for storing,

sharing, and discovering web bookmarks. We consider Delicious-tags bipartite network

where Delicious users connected to the tags they use for indexing their bookmarks. ⊥ is

the set of users and ⊤ is the set of tags.

Flickr (www.flickr.com) [109] is a photo publication web site. It allows to the users

to share photos, index them, organize them, comment on them, and other features. We

consider four bipartite networks:

– Flickr-tags where Flickr users are connected to the tags they use for indexing their

photos. ⊥ is the set of users and ⊤ is the set of tags.

CHAPTER 3. DATASETS AND THEIR PROPERTIES 29

– Flickr-comments where Flickr users are connected to the photos they comment. ⊥ is

the set of users and ⊤ is the set of photos.

– Flickr-favorites where Flickr users are connected to the photos they pick up as fa-

vorites. ⊥ is the set of users and ⊤ is the set of photos.

– Flickr-groups where Flickr users are connected to the groups they belong to. ⊥ is the

set of users and ⊤ is the set of groups.

Peer-to-Peer the eDonkey network [8] is a semi-distributed peer-to-peer file exchange

system based on directory servers. We consider the P2P-files bipartite network where peers

are linked to the files they provide. ⊥ is the set of peers and ⊤ is the set of files.

PRL Web of Science (www.isiwebofknowledge.com) is a database of papers and au-

thors of Physical Review Letters. We consider the PRL-papers bipartite network where

authors are linked to the papers they signed. ⊥ is the set of authors and ⊤ is the set of

papers.

n⊥ n⊤ m k⊥ k⊤ δ
Imdb-movies 127, 823 383, 640 1, 470, 418 11.5 3.8 0.00003
Delicious-tags 532, 924 2, 474, 235 37, 421, 585 70.2 15.1 0.000028
Flickr-tags 319, 686 1, 607, 879 13, 336, 993 41.7 8.3 0.000025
Flickr-comments 122, 561 1, 489, 485 4, 190, 415 34.1 2.8 0.000023
Flickr-groups 72, 875 381, 076 5, 662, 295 77.7 14.8 0.0002
Flickr-favorites 321, 312 6, 450, 934 17, 871, 828 55.6 2.7 0.0000086
P2P-files 122, 599 1, 920, 353 4, 502, 704 36.7 2.3 0.00002
PRL-papers 15, 414 41, 633 249, 474 16.2 6.0 0.0003

Table 3.1 – Basic bipartite statistics of our eight examples of real-world bipartite complex
networks.

The basic properties of our eight examples of real-world bipartite complex networks are

given in Table 3.1. It appears clearly that all are large networks with small average degrees

compared to their size. However, there is a difference of an order of magnitude between

the densities. For instance Flickr-groups is ten times denser than P2P-files.

3.3 Degrees statistics

We present in Figure 3.1 the top and bottom degree distributions of our eight networks.

Top and bottom degree distributions are very heterogeneous, and some may be fitted by

power laws (of various exponents), for instance Flickr-favorites (top) and Delicious-tags

(top). However, most degree distributions are quite far from power-laws.

30 3.3. DEGREES STATISTICS

Imdb-movies Delicious-tags Flickr-tags Flickr-comments

10-6

10-5

10-4

10-3

10-2

10-1

100 101 102 103
10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105 106
10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105
10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103
10-6

10-5

10-4

10-3

10-2

10-1

100 101 102 103 104 105
10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104
10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

Flickr-groups Flickr-favorites P2P-files PRL-papers

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104
10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104
10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104
10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105
10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105
10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104
10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

Figure 3.1 – Degree distributions of our eight datasets. First row: top nodes. Second row:
bottom nodes.

To study the correlations between top and bottom degrees, we plot in Figure 3.2 for

each integer i the average degree of all nodes which are neighbors of a node of degree i.

We plot this for top and bottom nodes separately. We plot the same values obtained for

random graphs of the same size and same degree distributions.

In all cases, the plots for the random cases are close to horizontal lines, showing that

there are no correlations between a node’s degree and the average degree of its neighbors:

this last value is independent of the node’s degree. Real-world cases exhibit significantly

different behaviors, thus demonstrating that these behaviors are nontrivial and related to

CHAPTER 3. DATASETS AND THEIR PROPERTIES 31

Imdb-movies Delicious-tags Flickr-tags Flickr-comments

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

100 101 102 103

random
real

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

100 101 102 103 104 105 106

random
real

 0

 100

 200

 300

 400

 500

 600

 700

 800

100 101 102 103 104 105

random
real

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

100 101 102 103

random
real

 5

 10

 15

 20

 25

 30

 35

100 101 102 103

random
real

 0

 5000

 10000

 15000

 20000

 25000

 30000

100 101 102 103 104 105

random
real

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

100 101 102 103 104

random
real

 0

 5

 10

 15

 20

 25

 30

100 101 102 103 104 105

random
real

Flickr-groups Flickr-favorites P2P-files PRL-papers

 0

 500

 1000

 1500

 2000

 2500

100 101 102 103 104

random
real

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

100 101 102 103 104

random
real

 0

 200

 400

 600

 800

 1000

 1200

 1400

100 101 102 103 104

random
real

 0

 100

 200

 300

 400

 500

 600

 700

100 101 102 103

random
real

 0

 50

 100

 150

 200

 250

100 101 102 103 104 105

random
real

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

100 101 102 103 104 105

random
real

 0

 20

 40

 60

 80

 100

 120

 140

100 101 102 103 104

random
real

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

100 101 102 103

random
real

Figure 3.2 – Degree correlations in our eight datasets, and in random bipartite graphs of
the same size and same degree distributions. First row: the average degree of the neighbors
of top nodes as a function of their degree. Second row: the average degree of the neighbors
of bottom nodes as a function of their degree.

intrinsinc properties of the underlying networks. We can see a general tendency: the average

degree of neighbors of nodes decreases (or increases) with the node degree. For instance,

in the Imdb-movies (bottom), the actors playing in many movies tend to play in smaller

movies (in terms of the number of involved actors). In the PRL-paper (top), the papers

cosigned by many authors tend to be cosigned by prolific authors. However, there are no

clear tendency in other datasets. For instance, Flickr-groups (bottom) and Flickr-comments

32 3.4. CLUSTERING STATISTICS

(bottom): point are scattered over a wide range of values, though such a tendency exists

for small degrees.

3.4 Clustering statistics

Let us now compare the values of clustering statistics of our real-world networks with

random bipartite graphs of the same size and same degree distributions.

We compute the ratio between the clustering coefficients on real networks and the values

obtained on random graphs, so that the values correspond to how many times the clustering

coefficient in real network is larger than the one in random network. The corresponding

results are presented in Table 3.2.

It appears clearly that the obtained values for the different notions of clustering (with

the exception of cc•) are larger on real-world networks than on random graphs. Moreover,

the obtained values for ccN (G) are often significantly larger on real-world networks than

on random graphs, which shows that it may capture more relevant information in some

cases.

cc•(⊥)
cc∗•(⊥)

cc•(⊤)
cc∗•(⊤)

ccN (G)
cc∗

N
(G)

cc•(⊥)

cc∗•(⊥)

cc•(⊤)

cc∗•(⊤)
cc•(⊥)
cc∗

•
(⊥)

cc•(⊤)
cc∗

•
(⊤)

Imdb-movies 1.39 1.8 34.16 1.04 1.02 1.42 1.76
Delicious-tags 1.62 3.11 1.43 1.14 1.02 1.57 3.22
Flickr-tags 1.64 1.72 1.25 1.07 1.01 1.61 1.81
Flickr-comments 3.29 1.28 14.16 0.70 0.98 3.38 1.25
Flickr-groups 6.38 3.40 2 0.68 1 5.78 3.2
Flickr-favorites 1.70 1.31 2 0.8 1 1.54 1.3
P2P-files 3.64 1.64 581.08 1.04 1.05 3.52 1.58
PRL-papers 5.64 4 26.29 1.2 1.25 5.19 4.07

Table 3.2 – The ratio between the clustering statistics of real-world networks and the values
on random bipartite graphs with the same size and same degree distributions. We denote
by ∗ the value for random bipartite graphs.

3.4.1 Clustering distributions

We show in Figure 3.3 the cumulative distributions of cc•(u), cc•(u) and cc•(u) for our

eight datasets: a point with coordinates (x, y) means that a fraction y of all the nodes have

a value lower than x for the considered statistics.

CHAPTER 3. DATASETS AND THEIR PROPERTIES 33

Imdb-movies Delicious-tags Flickr-tags Flickr-comments

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

Flickr-groups Flickr-favorites P2P-files PRL-papers

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

dot
max
min

Figure 3.3 – Cumulative distributions of the various clustering coefficients in our eight
datasets. First row: for top nodes. Second row: for bottom nodes. Dot, max and min
correspond to respectively.

Before entering in the discussion of these plots, notice that, by definition, we have

cc•(u) ≤ cc•(u) ≤ cc•(u) for any u. Therefore in each case, the lowest plot is the one of

cc•(u), the highest is the one of cc•(u) and the middle one corresponds to cc•(u).

Three main different behaviors may be observed in Figure 3.3:

– The plots of cc•(u), cc•(u) and cc•(u) grow very rapidly and are close to 1 almost

immediately, see for instance the case Imdb-movies (bottom). This means that the

neighborhoods of nodes have a small intersection, compared to the union of their

34 3.4. CLUSTERING STATISTICS

neighborhoods.

– The plot of cc•(u) grow much less quickly than cc•(u) and cc•(u). In this case, the

plot of cc•(u) remains lower than 1 for a long time and even until the end of the plot,

meaning that for an important number of nodes the value of cc•(u) is equal to 1,

see for instance the case Flickr-tags (top). This means that, although overlaps are in

general small compared to their possible value, the neighborhoods of many low-degree

nodes significantly or even completely overlaps with other nodes’ neighborhoods.

– The plots of cc•(u), cc•(u) and cc•(u) grow slowly, meaning that a significant number

of nodes have a large value of these statistics, see for instance the case P2P-files (top).

This means that node neighborhoods overlap significantly, and that this is not only

a consequence of the fact that low degree nodes have their neighborhoods included

in the ones of other nodes.

It is clear from the discussion above that the three notions of clustering captured by

cc•(u), cc•(u) and cc•(u) are different, and give complementary insight on the underlying

network properties.

Let us now compare the behaviors of cc•(u) on real-world cases and on random ones.

We present them in Figure 3.4. It appears clearly that, except in some cases (for instance

PRL-papers), the plots of the real-world values and of the random ones are quite similar.

This means that, concerning the values of cc•(u), real-world graphs are not drastically

different from random ones. This is due to the fact that the low degree nodes (which are

numerous in our networks) have with high probability their neighbors in common with high

degree nodes; by definition, this induces a low value of cc•(u) for the nodes of high and

low degree, since the node with high degree have also their neighbors in common with low

degree nodes. This is true by construction for random graphs, and the plots in Figure 3.4

show that this is mostly true for real-world networks also, which was not obvious.

CHAPTER 3. DATASETS AND THEIR PROPERTIES 35

Imdb-movies Delicious-tags Flickr-tags Flickr-comments

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

Flickr-groups Flickr-favorites P2P-files PRL-papers

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

Figure 3.4 – Cumulative distributions of the cc•(u) clustering coefficient in our eight
datasets, and in random bipartite graphs of the same size and same degree distributions.
First row: for top nodes. Second row: for bottom nodes.

36 3.4. CLUSTERING STATISTICS

3.4.2 Clustering correlations

Imdb-movies Delicious-tags Flickr-tags Flickr-comments

10-3

10-2

10-1

100

100 101 102 103

random
real

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105 106

random
real

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

random
real

10-3

10-2

10-1

100

100 101 102 103

random
real

10-3

10-2

10-1

100

100 101 102 103

random
real

10-4

10-3

10-2

10-1

100 101 102 103 104 105

random
real

10-4

10-3

10-2

10-1

100 101 102 103 104

random
real

10-4

10-3

10-2

10-1

100 101 102 103 104 105

random
real

Flickr-groups Flickr-favorites P2P-files PRL-papers

10-3

10-2

10-1

100

100 101 102 103 104

random
real

10-4

10-3

10-2

10-1

100

100 101 102 103 104

random
real

10-4

10-3

10-2

10-1

100

100 101 102 103 104

random
real

10-2

10-1

100

100 101 102 103

random
real

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

random
real

10-4

10-3

10-2

10-1

100 101 102 103 104 105

random
real

10-4

10-3

10-2

10-1

100

100 101 102 103 104

random
real

10-3

10-2

10-1

100

100 101 102 103

random
real

Figure 3.5 – Correlations of the cc•(u) clustering coefficient with nodes degrees in our eight
datasets, and in random bipartite graphs with the same size and degree distributions. First
row: for top nodes. Second row: for bottom nodes.

Let us observe the correlations between nodes’ degrees and their clustering coefficient.

Figure 3.5 presents for each integer i the average value of the clustering coefficients of all

nodes which have degree i. We plot this for top and bottom nodes separately. We plot the

same values obtained for random graphs of the same size and same degree distributions.

Three main observations may be made:

CHAPTER 3. DATASETS AND THEIR PROPERTIES 37

– The values for the random graphs are below the ones for the real-world cases. The

value of cc•(u) are slightly larger in real-world cases than in random ones, except in

PRL-papers (top) where the values are significantly larger.

– The values for the random graphs decrease approximately as a power of the degree

of u (straight line in log-log scale).

– In general, the clustering coefficient of low degree nodes is quite large, but the one of

large degree nodes is very small, like in random graphs. This is due to the fact that

the neighbors of nodes with high degree have a small intersection compared to the

union of their neighborhoods.

3.5 Redundancy statistics

We have seen in the previous section that bipartite clustering coefficients do not make

a huge difference between real-world and random bipartite graphs. This is why the redun-

dancy coefficient was introduced in [79]. We now compare the values of the redundancy

statistics of our real-world with comparable random bipartite graphs. We use the same

method as in Section 3.4.

Table 3.3 shows clearly that, except in some graphs, the redundancy coefficient is not

much larger in real-world networks than in random graphs. This is due to the fact that the

projections of these graphs are very dense. The redundancy coefficient therefore is huge, but

this is not a specific property of how the neighborhoods overlap: this is a direct consequence

of the high density of the projections. In such a case, the redundancy coefficient has similar

behaviors in such graphs and in their random equivalent.

rc•(⊥)
rc∗•(⊥)

rc•(⊤)
rc∗•(⊤)

Imdb-movies 18.57 25
Delicious-tags 1.05 1.01
Flickr-tags 1.12 1.04
Flickr-comments 8.75 1.72
Flickr-groups 0.92 1.02
Flickr-favorites 3.75 1.41
P2P-files 12 2.36
PRL-papers 0.82 1.10

Table 3.3 – Ratio between the redundancy of real-world networks and the values on random
bipartite graphs with the same size and same degree distributions.

38 3.5. REDUNDANCY STATISTICS

3.5.1 Redundancy distributions

Imdb-movies Delicious-tags Flickr-tags Flickr-comments

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

Flickr-groups Flickr-favorites P2P-files PRL-papers

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

random
real

Figure 3.6 – Cumulative distributions of the redundancy coefficient rc•(u) in our eight
datasets, and in random bipartite graphs of the same size and same degree distributions.
First row: for top nodes. Second row: for bottom nodes.

Let us now compare the distributions of rc•(u) for our datasets with the ones of com-

parable random graphs. Figure 3.6 shows two different behaviors:

– the value of the redundancy coefficient in random graphs is close to 0 for most nodes;

instead, in real-world networks it is significantly larger, see for instance case Imdb-

movies. In these cases, the redundancy coefficient captures a property that makes

CHAPTER 3. DATASETS AND THEIR PROPERTIES 39

real-world networks different from random ones.

– the value of the redundancy coefficient is very large for both (real and random)

graphs, their plots have very similar shape and equal to 1 for a large portion of the

nodes, see for instance case Flickr-tags. This is due to the density of the projected

graphs (as explained above).

Note that, in all cases, the plot of the redundancy coefficient starts with a nonzero value.

This means that there are some nodes with redundancy equal to zero, and so removing

these nodes would have a strong impact on the projections. In this

3.5.2 Redundancy correlations

Let us now observe the correlations between nodes’ redundancy coefficient and their

degree, plotted in Figure 3.7. From these plots, two main observations may be made:

– the plots for random graphs are horizontal, which means that the values of node

redundancy in random graphs are independent of the degree.

– the plots for real-world graphs exhibit nontrivial behaviors. The redundancy decreases

or increases with the degree, depending on the graph. In several cases, some of the

very high degree nodes have a very large redundancy coefficient.

40 3.6. CONCLUSION

Imdb-movies Delicious-tags Flickr-tags Flickr-comments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

100 101 102 103

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100 101 102 103 104 105 106

random
real

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 101 102 103 104 105

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100 101 102 103

random
real

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

100 101 102 103

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100 101 102 103 104 105

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

100 101 102 103 104

random
real

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

100 101 102 103 104 105

random
real

Flickr-groups Flickr-favorites P2P-files PRL-papers

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 101 102 103 104

random
real

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

100 101 102 103 104

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100 101 102 103 104

random
real

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

100 101 102 103

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100 101 102 103 104 105

random
real

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

100 101 102 103 104 105

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100 101 102 103 104

random
real

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100 101 102 103

random
real

Figure 3.7 – Correlation of the redundancy coefficient with degree in our eight datasets,
and in random bipartite graphs of the same size and same degree distributions. First row:
for top nodes. Second row: for bottom nodes.

3.6 Conclusion

In this chapter, we have described the real-world bipartite complex networks which we

use in the following chapters. The main observations that we made are:

– top and bottom degree distributions are very heterogeneous. The average degree of

neighbors of nodes decrease, increases or have more complex behavior with the node

degree, depending on the datasets,

CHAPTER 3. DATASETS AND THEIR PROPERTIES 41

– the three notions of clustering coefficient give complementary insight on the datasets

properties, and

– the redundancy coefficient is larger in real-world networks than in random graphs.

However, this depends on the density of the projection of the graph.

Our real-world networks have the advantage of spanning well the variety of cases met in

practice. We have observed that they have different properties. This is an important point

that will be useful in the next chapter because they are representative of many different

behaviors.

42 3.6. CONCLUSION

Chapter 4
Internal links and pairs

Contents
4.1 Introduction . 44

4.2 Internal pairs and links . 44

4.3 Analysis of real-world cases . 46

4.3.1 Amount of internal links and pairs 46

4.3.2 Distribution of internal links among nodes 48

4.3.3 Correlation of internal links with node degrees 49

4.4 Removing internal links . 50

4.5 Dynamics of real-world cases 52

4.5.1 Impact of the future period . 52

4.5.2 Impact of the reference period 53

4.6 Conclusion . 54

43

44 4.1. INTRODUCTION

4.1 Introduction

Many real-world complex networks are best modeled as bipartite graphs. However, there

is currently a lack of methods to analyze properly such graphs. Despite previous efforts to

develop such methods [79, 88, 140], much remains to be done in this direction.

We introduce here internal links and pairs as a new notion useful for such analysis. We

illustrate its relevance on several real-world cases and show that it is also interesting for

storing and modeling complex networks. We also show that it plays an important role in

the dynamics of bipartite networks.

The chapter is organized as follows. We introduce internal links and pairs in Section 4.2.

We then analyze the real-world datasets presented in Chapter 3 with regard to this new

notion in Section 4.3. We explore a more algorithmic perspective in Section 4.4, and the

role of this notion regarding the dynamics of real-world bipartite networks in Section 4.5.

We finally present our conclusions and perspectives in Section 4.6.

4.2 Internal pairs and links

Let us consider a bipartite graph B = (⊥,⊤, L). For any pair of nodes (u, v) /∈ L,

we denote by B + (u, v) the graph B′ = (⊥,⊤, L ∪ {(u, v)}) obtained by adding the

new link (u, v) to B. For any link (u, v) ∈ L, we denote by B − (u, v) the graph B′ =

(⊥,⊤, L \ {(u, v)}) obtained by removing the link (u, v) from B.

Definition 1 (internal pairs) A pair of nodes (u, v) ∈ ⊥ × ⊤ with (u, v) /∈ L is a ⊥-

internal pair of B if the ⊥-projection of B′ = B + (u, v) is identical to the one of B. We

define ⊤-internal pairs dually.

i j k l

A B C D E

i j k l

A B C D E

A

B

D E

C

B B′ = B + (B, l) B′
⊥ = B⊥

Figure 4.1 – Example of a ⊥-internal pair. Left to right: a bipartite graph B, the
bipartite graph B′ obtained by adding the link (B, l) to B, and the ⊥-projection of these
two graphs. As B′

⊥ = B⊥, (B, l) is a ⊥-internal pair of B.

CHAPTER 4. INTERNAL LINKS AND PAIRS 45

Definition 2 (internal links) A link (u, v) ∈ L is a ⊥-internal link of B if the ⊥-

projection of B′ = B − (u, v) is identical to the one of B. We define ⊤-internal links

dually.

A B C D E

i j k

A B C D E

i j k

A

B

D E

C

B B′ = B − (B, j) B′
⊥ = B⊥

Figure 4.2 – Example of a ⊥-internal link. Left to right: a bipartite graph B, the
bipartite graph B′ obtained by removing link (B, j) from B, and the ⊥-projection of these
two graphs. As B′

⊥ = B⊥, (B, j) is a ⊥-internal link of B.

In other words, (u, v) is a ⊥-internal pair of B if adding the new link (u, v) to B does

not change its ⊥-projection; it is a ⊥-internal link if removing link (u, v) from B does not

change its ⊥-projection. See Figures 4.1 and 4.2 for examples.

The notion of internal link is related to the redundancy of a node [79], defined for any

node v as the fraction of pairs in N(v) that are still linked together in the projection of

the graph B′ obtained from B by removing v and all its links (all these pairs are linked in

B⊥). There is however no direct equivalence between the two notions. The redundancy is a

node-oriented property: it gives a value for each node, while the notion of internal links and

pairs is link-oriented. As illustrated on Figure 4.3, nodes exhibiting the same fraction of

internal links may have different redundancies, and conversely two nodes having the same

redundancy may correspond to different internal connectivity patterns.

It is possible to classify the links of each node as internal or not; this induces a notion

of ⊥-internal degree and ⊤-internal degree of a node, which is its number of ⊥-internal

links and ⊤-internal links, respectively.

i j lk m n o

A B C D E F

Figure 4.3 – Redundancy versus internal links. In this graph, B and D have the same
fraction of ⊥-internal links (2

3
) while having different redundancies (resp. 1

3
and 2

15
).

We now give a characterization of internal links which does not explicitly rely on the

projection anymore and provides another point of view on this notion.

46 4.3. ANALYSIS OF REAL-WORLD CASES

Lemma 1 A link (u, v) of B is ⊥-internal if and only if N(v) \ {u} ⊆ N(N(u) \ {v}).

Proof : Let us consider a link (u, v) ∈ L and let B′ = B − (u, v) be the bipartite graph

obtained by removing the link (u, v) from B. Then, by definition, L⊥ = L′
⊥ ∪ {(u, x), x ∈

N(v) \ {u}}.

Suppose that (u, v) is a ⊥-internal link, i.e. L⊥ = L′
⊥. Then all links (u, x) in the

expression above already belong to L′
⊥. Therefore, for each x ∈ N(v) \ {u}, ∃ y 6= v ∈ ⊤

such that y ∈ N(u) ∩ N(x). By symmetry, x ∈ N(y) and y ∈ N(u) \ {v} therefore,

x ∈ N(N(u) \ {v}) and so N(v) \ {u} ⊆ N(N(u) \ {v}).

Suppose now that N(v) \ {u} ⊆ N(N(u) \ {v}). Then for each node x ∈ N(v) \ {u},

∃ y ∈ N(u) \ {v} such that x ∈ N(y). Thus, by definition of the projection, (u, x) ∈ L′
⊥.

Therefore L⊥ = L′
⊥ and the link (u, v) is ⊥-internal.

�

4.3 Analysis of real-world cases

In this section, we use the notions of internal links and pairs introduced in Section 4.2

to describe the real-world cases presented in Chapter 3. Let us insist on the fact that our

aim is not to provide accurate information on these specific cases, but to illustrate how

internal links and pairs may be used to analyze real-world data. We first show that there

are many internal links in typical data, then study the number of internal links of each

node and the correlation of this number with the node’s degree.

Since the links attached to ⊤-nodes (resp. ⊥-nodes) of degree 1 are all ⊥-internal (resp.

⊤-internal), and since there may be a large fraction of nodes with degree 1 in real-world

graphs, we only study in the sequel links attached to nodes with degree at least 2.

4.3.1 Amount of internal links and pairs

In order to capture how redundant is the bipartite structure, we compute the number

of ⊤- and ⊥-internal pairs and links. The fraction of internal links, denoted fEI
and pre-

sented in Table 5.1, seems in general not negligible. A quantitative analysis of these values

however requires the definition of a benchmark. That is why we compare the measures to

the corresponding amounts on random bipartite graphs with the same sizes and degree

distributions, which is a typical random model to evaluate the deviation from an expected

behavior – see for example [100, 101]. The measures related to this model will be referred

to with the symbol *.

CHAPTER 4. INTERNAL LINKS AND PAIRS 47

We denote by PI(⊥) (resp. PI(⊤)) the set of ⊥-internal pairs (resp. ⊤-internal pairs)

and by EI(⊥) (resp. EI(⊤)) the set of ⊥-internal links (resp. ⊤-internal links). We normal-

ize the number of internal pairs and links measured on real graphs to the values obtained

with the model described above. The corresponding results are also presented in Table 5.1.

fEI
(⊥) PI(⊥)

P∗
I
(⊥)

EI(⊥)
E∗

I
(⊥)

fEI
(⊤) PI(⊤)

P∗
I
(⊤)

EI(⊤)
E∗

I
(⊤)

Imdb-movies 0.031 0.441 47.0 0.026 0.491 147
Delicious-tags 0.112 0.972 1.47 0.104 1.823 5.31
Flickr-tags 0.117 0.920 1.51 0.048 1.040 2.50
Flickr-comments 0.398 0.258 4.22 0.002 0.151 22.0
Flickr-groups 0.228 0.491 2.21 0.015 0.249 2.86
Flickr-favorites 0.172 0.574 2.02 0.002 0.704 12.4
P2P-files 0.337 0.082 8.53 0.136 0.092 1430
PRL-papers 0.718 0.033 7.17 0.487 0.001 11.2

Table 4.1 – Fraction of internal links (fEI
), number of internal pairs (PI) and internal links

(EI) of real-world graphs normalized to the values on random bipartite graphs with the
same size and same degree distributions.

We first notice that the behaviors in regards to the amount of internal links are very

heterogeneous. Still some general trends can be underlined: in the random case, ⊥- and

⊤-internal links are underestimated. So, the probability of having nodes sharing the same

neighborhood is higher in real graphs than in random ones. We may indeed expect, for

instance, that people participating to the same paper have a higher probability to be

coauthors of another one than a random pair of authors.

Meanwhile the numbers of internal pairs are generally overestimated in random net-

works. To understand this effect, let us consider the extreme case where two ⊥-nodes in a

graph have either exactly the same neighborhood, or no common neighbors. Then all links

are ⊥-internal, and the graph does not contain any internal pair. This example suggests

that the number of internal pairs is probably anti-correlated to the number of internal

links.

In general, there is a correlation between the fact that the number of internal links

is underestimated in random graphs and the fact that the number of internal pairs is

overestimated, but this correlation does not hold in all cases. Moreover, there is no direct

link between these observations and the sizes or average degrees of the considered graphs.

Finally, we observe a specific behavior for the two graphs which correspond to tagging

databases, i.e. Delicious-tags and Flickr-tags. For these graphs we observe the lowest gaps

between the real and random cases for ⊥-internal links and the amounts of ⊥-internal pairs

48 4.3. ANALYSIS OF REAL-WORLD CASES

are very close in the real and random cases. Conversely, they are the only graphs for which

the amount of ⊤-internal pairs is underestimated in random graphs.

Since we can observe a wide range of behaviors both for ⊤- and ⊥-internal links and

pairs, we will restrict our analysis in the following to ⊥-internal links and pairs for the sake

of brevity. We will see that this allows enlightening observations.

4.3.2 Distribution of internal links among nodes

The notion of internal links partitions the links of each node into two sets: the internal

ones and the others. We now study how the fraction of internal links is distributed among

nodes. On Figure 4.4, we plot the complementary cumulative distribution of the fraction

of internal links per node for the datasets under study. We also plot the complementary

cumulative distribution for random graphs.

Imdb-movies Delicious-tags Flickr-tags Flickr-comments

10-6

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100

random
real

10-5

10-4

10-3

10-2

10-1

10-3 10-2 10-1 100

random
real

10-6

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100

random
real

10-6

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100

random
real

Flickr-groups Flickr-favorites P2P-files PRL-papers

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100

random
real

10-6

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100

random
real

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100

random
real

10-5

10-4

10-3

10-2

10-1

100

10-2 10-1 100

random
real

Figure 4.4 – Complementary cumulative distribution of the fraction of internal links per
node.

One of the most noticeable differences between both curves lies in the probability of

having a node whose links are all internal (x = 1): this fraction is indeed much higher in

real than in random graphs. We also observe that real graphs exhibit fewer nodes with

very low (or null) fractions of internal links (though the fraction of nodes with no internal

link is high in both cases). In this respect too, the datasets behave differently: for Imdb-

movies the probability of having a 10−2 fraction of internal links is more than one order of

CHAPTER 4. INTERNAL LINKS AND PAIRS 49

magnitude larger in the random than in the real graph, while Flickr-tags curves are close

to be superimposed at low fractions. Notice that this is not directly related to the fact that

the number of internal links is underestimated or not in random graphs: for Delicious-tags

the ratio between the number of ⊥-internal links in the real and in the random case is

smaller than for Flickr-tags, but the difference between the distributions of the fraction of

internal links per node are larger for Delicious-tags than for Flickr-tags.

Finally, the very low fractions that we observe are associated to nodes with high degree:

to have a 10−4 fraction of internal links, a node has to have a degree of at least 104.

Therefore, we study in the following the correlation between the degree of a node and its

number of internal links.

4.3.3 Correlation of internal links with node degrees

We call the number of internal links of a node its internal degree, its total number of links

being its degree. We investigate in this section the relationship between both quantities,

plotting on Figure 4.5 the average degree of a node in regards its (⊥-)internal degree for

the real datasets and the randomized ones.

Imdb-movies Delicious-tags Flickr-tags Flickr-comments

100

101

102

103

100 101 102

random
real

slope=0.48
100

101

102

103

104

105

106

100 101 102 103 104 105

random
real

slope=0.75
slope=0.74

100

101

102

103

104

105

100 101 102 103 104

random
real

slope=0.70
slope=0.73

100

101

102

103

104

105

100 101 102 103 104 105

random
real

slope=0.86
slope=0.66

Flickr-groups Flickr-favorites P2P-files PRL-papers

100

101

102

103

104

105

100 101 102 103 104 105

random
real

slope=0.69
slope=0.64

100

101

102

103

104

105

100 101 102 103 104 105

random
real

slope=0.75
slope=0.67

100

101

102

103

104

105

100 101 102 103 104

random
real

slope=0.63
100

101

102

103

104

100 101 102 103

random
real

slope=0.93
slope=0.78

Figure 4.5 – Average degree as a function of the internal degree (for users projection).

We observe that both real and random curves in several cases can be approximated

by a sub-linear law on several decades. However, this model is unsatisfactory on P2P-files

database, and questionable on cases where the values are too rare or too scattered: most

50 4.4. REMOVING INTERNAL LINKS

noticeably Imdb-movies and Flickr-groups. The dispersion observed at large degrees is a

consequence of the heterogeneous degree distribution, the number of nodes with high degree

being low.

If the fact that a given link is internal or not was independent from the node’s degree,

these curves would be linear. As random graphs have a sublinear behavior, that means that

nodes with large degrees have on average a higher fraction of internal links. This effect can

be explained qualitatively: increasing the degree of a node u – everything being otherwise

unchanged – implies increasing the probability that one of his neighbors v is such that

N(v) \ {u} ⊆ N(N(u) \ {v}).

On the other hand, the slope for real graphs is in most cases larger than for the random

ones – again tagging datasets exhibit a different behavior. So there is an additional effect

leading high degree nodes to have not as high an internal degree as expected by considering

only the degree distributions. This is consistent with previous observations: the real case

provides more internal links and fewer nodes with a low (but not null) fraction of such

links, which must be high degree nodes. This stems from the fact that if nodes u and v are

neighbors, the probability that N(v) \ {u} ⊆ N(N(u) \ {v}) is all the more important if

v has a small degree and u a large one. Therefore we expect that degree-correlated graphs

yield larger slopes than degree-anticorrelated ones. Yet, a more quantitative understanding

of these phenomena calls for a study of the degree correlations in real-world graphs.

4.4 Removing internal links

When modeling complex networks using bipartite graphs [63, 101], the presence of in-

ternal links may be a problem as they are poorly captured by models. To this regard,

removing internal links before generating a random bipartite graph may lead to better

models. Moreover, internal links are precisely these links in a bipartite graph which may

be removed without changing the projection. As the bipartite graph may be seen as a com-

pact encoding of its projection [79], one then obtains an even more compressed encoding.

Considering the example of the P2P-files dataset, it demands 30 MB if stored as a usual

bipartite table of lists, while the corresponding ⊥-projection (i.e. users) demands 213 MB

and the ⊤-projection demands 4.6 GB.

However, removing internal links is not trivial, as removing one specific link (u, v) may

change the nature of other links: while they were internal in the initial graph, they may not

be internal anymore after the removal of (u, v). See Figure 4.6 for an example. Therefore,

in order to obtain a bipartite graph with no internal link but still the same projection (and

so a minimal graph to this regard), it is not possible in general to delete all initial internal

links since this would alter dramatically the structure of the projection. The set of internal

CHAPTER 4. INTERNAL LINKS AND PAIRS 51

links must therefore be updated after each removal. Going further, there may exist removal

strategies which maximize the number of removals, whereas others may minimize it.

i j k l

A B DC

i j k l

A B DC

A

B

D

C

B B′ = B − (A, i) B′
⊥ = B⊥

Figure 4.6 – Influence of the deletion process on internal links.
{(A, i), (B, j), (C, k), (D, l)} are ⊥-internal links of B, yet deleting (A, i) leads to B′

where {(B, j), (C, k), (D, l)} are no longer ⊥-internal links, as they are the only links in
B′ ensuring that A is connected to respectively B, C and D in B⊥.

To explore these questions, let us consider a random removal process, where each step

consists in choosing an internal link at random and removing it, and we iterate such steps

until no internal link remains. Figure 4.7 presents the number of remaining internal links

as a function of the number of internal link removed for typical cases. We also plot the

upper bound EI − x (where x denotes the number of link removals), which represents the

hypothetical case where all links initially internal remain internal during the whole process.

Imdb-movies P2P-files

⊥-internal links ⊤-internal links ⊥-internal links ⊤-internal links

0

104

2.104

3.104

4.104

5.104

0 104 2.104 3.104 4.104 5.104
0

104

2.104

3.104

4.104

0 104 2.104 3.104 4.104
0

2.105

4.105

6.105

8.105

10.105

12.105

14.105

16.105

0 4.105 8.105 12.105 16.105
0

2.105

4.105

6.105

0 2.105 4.105 6.105

Figure 4.7 – Number of internal links remaining as a function of the number of deletions.
Red thick line: random deletion process, blue thin line: theoretical upper bound.

This random deletion process leads to a pruned bipartite graph, containing the infor-

mation of the 1-mode graph. Going back to the example of the P2P dataset, the obtained

bipartite storage graph demands 12 MB for the related ⊥-projection and 22 MB for the

⊤ one, thus enabling a compression to 0.40 (resp. 0.73) when compared to the standard

30 MB bipartite representation of the graph (which is itself a compact encoding of the

projection).

52 4.5. DYNAMICS OF REAL-WORLD CASES

To go further, one may seek strategies that remove as many internal links as possible,

for instance using a greedy algorithm selecting at each step the internal link leading to the

lowest decrease of the number of remaining internal links, but this is out of the scope of

the current work.

4.5 Dynamics of real-world cases

Using the formalism described in Section 2.7, let us consider a set D = {(ti, ui, vi), i =

1...n} of timestamped links and the reference graph B = (⊥,⊤, L) observed during the

reference period [a, b[. Our aim here is to give an insight of the reference graph’s dynamics.

In particular, we study whether the new links appearing among nodes of B after date b,

during a future period [b, c[for a given c > b, are internal pairs in the reference graph.

We consider only the links between nodes of B (we ignore new nodes appearing in the

future period [b, c[) which are not present in B: we consider links in ⊥ ×⊤ \ L only. This

leads to the set L′ = {(u, v), ∃(t, u, v) ∈ D s.t. b 6 t < c} ∩ (⊥×⊤ \ L) of new links.

We present the results obtained for P2P-files, Delicious-tags and Flickr-comments.

4.5.1 Impact of the future period

In order to gain more insight on the dynamics of our datasets, let us consider the

number |L′| of new links appearing during the future period [b, c[, for c = b+1, b+2..., b+n.

Results are presented in Figure 4.8 (first row). For each dataset, we close a duration b of the

reference period [0, b[which is representative of wide range of reference period durations for

the dataset. We chose the units by which we increase the future period duration accordingly.

The number of new links grows rapidly with the duration of the future period, showing

that many new links appear between nodes of the reference period, even after a long time.

As one may expect, though, the number of new links grows faster during the first few days.

The fraction of internal pairs among these new links is presented in Figure 4.8 (second

row). It is very high, with a maximal at almost 45%, 21% and 40% for P2P-files, Delicious-

tags and Flickr-comments respectively. The fraction is stable or even slightly increasing for

Delicious-tags and Flickr-comments and in P2P-files it decreases as the duration of the

future period grows, but it remains above 25% for future periods of up to 50 days.

CHAPTER 4. INTERNAL LINKS AND PAIRS 53

P2P-files Delicious-tags Flickr-comments

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 10 20 30 40 50 60
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 10 15 20 25 30 35 40 45 50
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 5 10 15 20 25 30 35

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 15 20 25 30 35 40 45 50
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10 15 20 25 30 35

Figure 4.8 – Number of new links (first row) and fraction of internal pairs among them
(second row) as functions of the future period duration. Left: P2P-files with a reference
period [0, 1day[and a future period [1, x[, for x = 2, ..., 55 days (horizontal axis, in days).
Center: Delicious-tags with a reference period [0, 12 months[and a future period [12, x[, for
x = 13, ..., 46 months (horizontal axis, in months). Right: Flickr-comments with a reference
period [0, 6 months[and a future period [6, x[, for x = 7, ..., 34 months (horizontal axis, in
months).

4.5.2 Impact of the reference period

Let us now observe how the number of new links |L′| and the fraction of internal pairs

among them evolves as the duration of the reference period grows. We consider reference

periods [0, b[, for b = 1, 2, ..., n, and for each b we consider a fixed duration α of the

future period [b, b+ α[(α depends to the dataset). We present the number of new links in

Figure 4.9 (first row). We observe that it grows rapidly with the reference period duration

b. The fraction of internal pairs among these new links is presented in Figure 4.9 (second

row):

– in P2P-files, it increases from 35% to 45% for reference periods from 1 to 6 hours.

After this it decreases slowly but remains above 28% for reference periods of up to

48 hours.

– in Delicious-tags, it increases slowly from 20% to 27% for reference periods from 1 to

24 months.

– in Flickr-comments, it decreases rapidly from 70% to 20% for reference periods from

54 4.6. CONCLUSION

P2P-files Delicious-tags Flickr-comments

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 5 10 15 20 25 30 35 40 45 50
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 5 10 15 20 25
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 5 10 15 20 25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 10 20 30 40 50 60
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25

Figure 4.9 – Number of new links (first row) and fraction of internal pairs among them
(second row) as functions of the reference period duration, Left: P2P-files with a reference
period [0, x[, for x = 1, 2, ..., 48 hours and a observation period [x, x + 15 days[of 15
days (horizontal axis, in hours). Center: Delicious-tags with a reference period [0, x[, for
x = 1, 2, ..., 24 months and a observation period [x, x+24 months[of 24 months (horizontal
axis, in months). Right: Flickr-comments with a reference period [0, x[, for x = 1, 2, ..., 24
months and a observation period [x, x + 12 months[of 12 months (horizontal axis, in
months).

1 to 7 months. After this it decreases slowly.

These statistics show that the fraction of new links which were internal pairs is very

high in our datasets, even for long reference and future periods, and therefore that internal

pairs play a strong role in the dynamics.

4.6 Conclusion

In this chapter, we introduced the notion of internal links and pairs in bipartite graphs,

and proposed it as an important notion for analyzing real-world bipartite complex networks.

Using a wide set of real-world examples, we observed that internal links are very frequent

in practice, and that associated statistics are fruitful measures to point out similarities

and differences among real-world networks. This makes them a relevant tool for analysis of

bipartite graphs, which is an important research topic. Moreover, removing internal links

CHAPTER 4. INTERNAL LINKS AND PAIRS 55

may be used to compact bipartite encodings of graphs and to improve their modeling. We

finally observed that internal pairs become internal links with high probability in the future

evolution of the graph, and that they constitute a significant part of new links. This shows

that internal links and pairs are also important for the dynamics of real-world complex

networks.

We provided a first step towards the use and understanding of internal links and pairs.

Further investigations could bring more precise information about the role of internal links,

in particular regarding the dynamics. One may also study the links (and pairs) which are

both ⊥- and ⊤-internal, as they may have a special importance in a graph.

56 4.6. CONCLUSION

Chapter 5
Link prediction in bipartite graphs

Contents
5.1 Introduction . 58

5.2 Related work . 58

5.3 The bipartite link prediction problem 60

5.4 Bipartite prediction methods 61

5.4.1 Internal link prediction . 61

5.4.2 Collaborative filtering prediction 66

5.5 Experimental setup . 68

5.5.1 P2P-files dataset . 68

5.5.2 Parameters for prediction methods 69

5.6 Experimental results . 70

5.6.1 Impact of the prediction period duration 71

5.6.2 Impact of the reference period duration 73

5.6.3 Impact of the weight function . 74

5.7 Delicious-tags and Flickr-comments datasets 74

5.8 Conclusion . 76

57

58 5.1. INTRODUCTION

5.1 Introduction

Many real-world complex networks are dynamic: they evolve during time, with node

and link additions and removals. Studying such dynamics is extremely important for our

understanding of these objects, but very limited knowledge and ground methodology is

available, even for classical (non-bipartite) dynamic graphs.

One of the main approaches developed for studying graph dynamics is link predic-

tion [28, 67, 87], which consists in predicting the links that will probably appear in the

future, given a snapshot of the considered graph at a given time.

We address here the problem of link prediction in dynamic bipartite graphs. To do so,

we propose an approach based on internal pairs, introduced in the previous chapter, and

compare it to a classical approach. We study the performance of our method on real-world

datasets using wide ranges of parameters and detail the results for a P2P-file graph. We

show that this method reaches very good performances and that internal pairs play a key

role in the dynamics of real-world bipartite graphs.

The chapter is organized as follows. We review related work in Section 5.2. We then

formally state the considered problem and its assessment in Section 5.3. We present in

Section 5.4 our prediction method and a basic method which we consider for compari-

son purpose. We finally present our experimental setup in Section 5.5 and the results of

our experiments in Sections 5.6 and 5.7. We discuss our conclusions and perspectives in

Section 5.8.

5.2 Related work

Link prediction is a key research problem in network dynamic analysis. Several works

study this problem on classical (non-bipartite) graphs. Most of them are based on measures

of similarity between nodes. For instance, in [87] the authors examine several topological

measures (such as Jaccard coefficient, Adamic/Adar coefficient, SimRank, etc.) based on

node neighborhoods and the set of all paths between nodes. They use these measures for

ranking possible future co-authors collaborations. In [69] the author proposes to use another

topological measure called generalized clustering coefficient. In [67, 103] the authors add

several non-topological measures based on node attributes (such as keyword match, number

of papers, geographic proximity, KL-divergence of two nodes’ topic distribution, etc.) and

they use a supervised learning algorithm to perform link prediction. In a similar way, the

authors of [29] predict co-authoring of publications by using topological measures computed

in the co-authoring graph and indirect topological measures computed using the co-author

graph (where two papers are linked if they are signed by a same author). The authors

CHAPTER 5. LINK PREDICTION IN BIPARTITE GRAPHS 59

of [134] add another measure (local probabilistic model) to estimate the co-occurrence

probability of two nodes, and in [129] the authors extend this by incorporating available

temporal information. The authors of [19] propose an approach based on supervised random

walks. This approach uses the nodes’ and links’ attributes to guide the random walk for

visiting the nodes to which new links will be created in the future. Finally, the authors

of [45] use a hierarchical decomposition of a social network for predicting missing links.

They generate a set of hierarchical random graphs, and they compute average probability

of connection between two nodes within these hierarchical random graphs.

Works presented above deal with classical (non-bipartite) graphs, and are not directly

applicable to or appropriate for bipartite graphs.For instance, the methods based on the

immediate common neighborhood of two nodes rely on the presence of triangles in the

graph. However, there are no triangles in the bipartite graphs. The methods based on the

paths between nodes or random walk must be adapted to take into account only paths of

odd length, since a link can only appear between two nodes if they are already connected

by paths of odd lengths in a bipartite graphs.

Up to our knowledge, only two papers target the problem of link prediction in bipartite

graphs [28,70]. In [70], the authors adapt some topological measures used in classical graphs

for predicting links in bipartite graphs. For each possible link (u, v), the authors compare

the neighbors of u in the bipartite graph and neighbors of neighbors of v. They also study

the set of all paths between nodes in the bipartite graph. Going further, the authors of [28]

consider two transformations of the bipartite graph into a classical one, then for predicting

link (u, v) they consider the classical graph containing u, and they study the topological

measures between u and the neighbors of v in the bipartite graph, and conversely. They

apply a supervised learning algorithm to obtain the results.

Another research problem is closely related to link prediction in bipartite graphs: the

recommendation problem [112]. Recommendation systems are used to suggest items to

users, such as products to customers for instance. Notice however that the two problems

are quite different: recommendation aims typically at finding a small number of products

of interest for each customer; prediction aims at finding links that will appear in the future.

Predicting that a given node will have a huge number of new links while many others will

not have any is of little interest regarding recommendation but may be a great success

regarding prediction.

Various approaches have been developed for recommendation [20,25,74], with collabora-

tive filtering being the most successful and widely used approach [74]. Two main approaches

of collaborative filtering have been proposed, both based on the idea that similar users will

purchase similar items and that users will purchase items similar to the ones they already

purchased. The first approach consists in predicting the rating of a given user for a given

60 5.3. THE BIPARTITE LINK PREDICTION PROBLEM

item [111]. It relies on known rating data (e.g. explicit users opinions for items, rated on

a scale of 1 to 5). The second approach consists in ranking the most relevant items for a

given user in order of decreasing interest, and then in recommending the top N items to

this user [49,89]. This approach does not require explicit ratings but only the information

of which users adopted which items, and is the most similar to link prediction. We will

use such an approach in this chapter for the purpose of comparison with our method, see

Section 5.4.2.

5.3 The bipartite link prediction problem

Using the formalism described in Section 2.7, let us consider a set D = {(ti, ui, vi), i =

1...n} of timestamped links, the reference graph B = (⊥,⊤, L) observed during the refer-

ence period [a, b[, and the set L′ = {(u, v), ∃(t, u, v) ∈ D s.t. b 6 t < c} ∩ (⊥ × ⊤ \ L)

of links added to B during period [b, c[which we call now the prediction period. Notice

that we consider only the links between nodes of B (we ignore new nodes appearing in the

period [b, c[) which are not present in B: we consider links in ⊥×⊤ \ L only.

The goal of a link prediction method is to find a set P of predicted links which contains

many of the links in L′ but only few which are not in L′. Notice that in the extreme case

where one predicts all possible links, i.e. P = ⊥ × ⊤ \ L, then one succeeds in predicting

all links of L′ but also predicts many links which are not in L′. Conversely, predicting no

link at all, i.e. P = ∅, trivially does not predict links not in L′ but fails in predicting any

link in L′.

Evaluating the performances of a prediction method therefore consists in evaluating

its success in reaching a tradeoff regarding these two objectives, which is non-trivial. We

present below a classical method to do so [43, 118], which we use in this chapter.

Let us denote by P the set of links that the method predicts will not appear: P =

(⊥×⊤ \L) \ P . Figure 5.1 illustrates the four possible cases which may occur during link

prediction: the set P ∩ L′ of true positives is the set of appearing links that the method

successfully predicts; the set P \ L′ of true negatives is the set of unpredicted links which

indeed do not appear; conversely, the false positives are the links in P \ L′, i.e. the links

which we predicted but do not appear, and the false negatives are the links in P ∩ L′.

The aim of a link prediction method is to maximize the number of true positives and

negatives while minimizing the number of false positives and negatives. This is captured

by two quantities, called precision and recall.

The precision is the fraction of true positives among the predicted links, i.e. |P∩L′|
|P |

. In

other words, it is the probability that the method is right when it predicts that a given

link will appear, and therefore is a measure of correctness.

CHAPTER 5. LINK PREDICTION IN BIPARTITE GRAPHS 61

false positives

P
E

true negatives
\P

\T

T

X L

L

P \ Lfalse negatives
P U

P
true positives

UL
L

Figure 5.1 – A prediction method divides the set of possible links ⊥ × ⊤ \ L into four
categories: true positives, P ∩ L′; true negatives, P \ L′; false positives, P \ L′; and false
negatives, P ∩ L′.

The recall is the fraction of true positives among the appearing links, i.e. |P∩L′|
|L′|

. In

other words, it is the probability that an appearing link will indeed be predicted by the

method, and so is a measure of completeness.

As explained above, there is a tradeoff between precision and recall, as, in general,

improving one degrades the other and conversely. In order to capture this in a single value,

which often is more convenient, one generally considers the F-measure, 2×|P∩L′|
|P |+|L′|

, which is

the harmonic mean of precision and recall [130]. The goal of a prediction method then is

to maximize the F-measure.

5.4 Bipartite prediction methods

In this section, we introduce our link prediction method for bipartite graphs, which we

call internal link prediction. We also present a typical collaborative filtering method which

we use for comparison in the next sections.

5.4.1 Internal link prediction

The key feature of our prediction method is that it focuses on internal pairs: it predicts

only links that are internal pairs in the reference graph. The intuition behind this is that

two bottom nodes which already have a common neighbor in B (i.e. they are linked in B⊥)

will probably acquire more in the future. Instead, if two nodes have no common neighbor

in B, then they will probably still have none in the future. The links that can be added to

B which fit both criteria are precisely internal pairs.

Going further, two bottom nodes with many common neighbors in B are more likely to

have more common new neighbors in the future than nodes which have only one neighbor

in common. More generally, all the weight functions presented in Section 2.5 are measures

(from different points of view) of our expectation that two nodes having at least one

62 5.4. BIPARTITE PREDICTION METHODS

neighbor in common probably will have more in the future. Therefore, we expect that the

links that will appear are the internal pairs inducing ⊥-links with high weights.

This leads to the following prediction method, which we call internal link prediction.

Let us consider a weight function ω like the ones described in Section 2.5, and a given

weight threshold τ. We denote by L⊥τ = {(u, w) ∈ L⊥, ω(u, w) ≥ τ} the set of links in the

projection that have a weight larger than or equal to τ. We then predict all the internal

pairs which induce at least one link in L⊥τ.

A B C D E

lkji

A B C D E

lkji

A

C

D
E

B

A

C

D
E

B

B internal pairs
links induced by
internal pairs

links induced by
(B, l)

A

C

D
E

B

1/3

1/3

1/2
2/3

1/4

1/4

1/3

1/4

A

C

D
E

B

A

C

D
E

B

A

C

D
E

B

B⊥, γ threshold τ = 1
4

threshold τ = 1
3

threshold τ = 2
3

Figure 5.2 – Example of internal link prediction. First row (left to right): a bipartite
graph B, the internal pairs of B, the ⊥-links they induce, and the links of B⊥ induced by
the internal pair (B, l). Second row (left to right): the Jaccard weighted ⊥-projection of B
(B⊥, γ), and the links L⊥ 1

4
, L⊥ 1

3
, L⊥ 2

3
obtained using thresholds τ respectively equal to 1

4
,

to 1
3
and to 2

3
.

Figure 5.2 shows an example of internal link prediction using the Jaccard weight func-

tion, γ. The set of internal links of B is {(B, l), (C, k), (D, k), (E, j)}; let us focus on the

internal pair (B, l). It induces (B,C), (B,D), and (B,E). Given a threshold τ we predict

(B, l) if one of these links has weight at least τ. For instance:

• if τ = 1
4
, all links in the projection have a weight larger than or equal to τ, and so

we predict all possible internal pairs in the bipartite graph, including (B, l);

• if τ = 1
3
, only 5 links in the projection have weight larger than or equal to τ, including

(B,C), which is induced by (B, l); we therefore predict (B, l);

• if τ = 2
3
, only one link has the weight larger than or equal to τ, and it is not a link

induced by (B, l); therefore we do not predict (B, l).

Algorithm 1 provides the details of the method useful for implementation, and Theorem 1

shows its complexity.

CHAPTER 5. LINK PREDICTION IN BIPARTITE GRAPHS 63

Algorithm 1: Internal link prediction

Input: bipartite graph B = (⊥,⊤, L), weight function ω, threshold τ

Output: set P of predicted links

P ← ∅
for u ∈ ⊥ do

Nbot← ∅
for v ∈ N(u) do

for w ∈ N(v)\{u} do
Nbot← Nbot ∪ {w}
compute ω(u, w)

Iu ← ∅
d← 0, 0, . . . , 0
m← ∅
for w ∈ Nbot do

for v ∈ N(w) do
if ω(u, w) > τ then

m ← m ∪ {v}

d[v] ← d[v] + 1

for v ∈ m do
if |N(v)| = d[v] then

Iu ← Iu ∪ {v}

P ← P ∪ {(u, v), v ∈ Iu}

Theorem 1 Algorithm 1 performs internal link prediction on a bipartite graph B = (⊥,⊤, L)

in time O(∆⊥|L|), where ∆⊥ = maxu∈⊥ |N⊥(u)| is the largest degree in B⊥, and space

O(|⊤|+ |⊥|) in addition to the space needed for storing B.

Proof : We first show the termination and correctness of our algorithm. The algorithm

consists of imbrications of for loops over finite and static sets, so it necessarily terminates.

To show its correctness, we must show that it predicts all the internal pairs that induce

links in L⊥τ, i.e. links with weight larger than or equal to τ, and only those links.

The algorithm consists in a loop over all nodes u in ⊥, with three main parts, each

consisting in a for loop.

The first part computes N⊥(u), denoted by Nbot in the algorithm to emphasize that

it is not precomputed nor stored, and the weights of the corresponding links. The nodes

w added to Nbot are exactly those in N(N(u)), which by definition is exactly N⊥(u).

Therefore Nbot = N⊥(u) at the end of the first part of the loop. We do not detail the weight

64 5.4. BIPARTITE PREDICTION METHODS

computation here, because it depends on the weight function considered. We assume that

it can be computed without time complexity overhead together with N⊥, which is true for

all the weight functions presented in Section 2.5.

The second part does two things. First it stores in a set m the nodes v such that (u, v)

induces a link (u, w) ∈ L⊥τ (notice that (u, v) is not necessarily an internal pair). Indeed,

a node v is added to m as soon as it has a neighbor w ∈ ⊥ such that (u, w) ∈ L⊥τ.

This loop also stores in d[v] the number of neighbors of v which are neighbors of u in B⊥.

At the end of the second part of the loop, the nodes v for which d[v] = |N(v)| are exactly the

nodes v such that (u, v) is an internal pair. Indeed, d[v] is incremented for each w ∈ N(v)

such that w ∈ N⊥(u). Therefore d[v] = |N(v)| if and only if N(v) ⊆ N⊥(u) = N(N(v)),

i.e. if and only if (u, v) is an internal pair, from Lemma 1.

The third part of the loop then computes the intersection between the nodes v which

correspond to internal pairs (those for which d[v] = |N(v)|) and the nodes corresponding

to links which induce at least one link (u, w) ∈ L⊥τ (the nodes in m).

Before entering in the details of the complexity analysis, let us discuss how sets may be

efficiently managed in our algorithm. A set s of nodes in ⊤ (resp. ⊥) may be represented by

an array indexed by nodes in ⊤ (or ⊥), such that s[v] = 1 if and only if v ∈ s, together with

an array is containing the indexes of nodes in s, and an integer ns representing the number

of nodes in s. Therefore listing all nodes in s simply consists in listing the ns first values

of is. Adding a node v to s is performed in two steps: if s[v] = 1, do nothing; otherwise,

set s[v] to 1, increment ns, and set is[ns] to v. To reinitialize s to ∅, iterate set s[is[k]]← 0

for all k ≤ ns, then set ns = 0. Finally, adding an element to a set requires constant time,

and setting a set to ∅ requires as many operations as |s|, which is necessarily bounded by

the time needed to populate the set, and therefore does not create any time complexity

overhead. In our algorithm, the array d may be managed in a similar way: an additional

array stores the indexes of nodes for which d[v] 6= 0, which allows to reset d to 0 without

iterating over all nodes in ⊤.

This leads to the space complexity of our algorithm. With the encoding above, a set of

nodes in ⊤ (resp. ⊥) requires Θ(|⊤|) (resp. Θ(|⊥|)) space. Therefore, although the number

of links in B⊥ is huge in general compared to |L|, our algorithm only requires Θ(|⊤|+ |⊥|)

space in addition to the space needed for storing its input B and its output P (which we

only store for clarity but may not be stored).

Let us now study the time complexity of the algorithm. The main loop runs over all

nodes in ⊥ and performs three sets of operations. We will study the complexity of these

parts independently.

The first part of the loops performs Θ(|N(v)|) operations for each node v ∈ N(u).

CHAPTER 5. LINK PREDICTION IN BIPARTITE GRAPHS 65

Therefore the total number of operations for the first part of the main loop is of the order:

Θ





∑

u∈⊥

∑

v∈N(u)

|N(v)|



 = Θ

(

∑

v∈⊤

|N(v)||N(v)|

)

.

We have that |N(v)| ≤ δ⊤, where δ⊤ = maxv∈⊤ |N(v)|. Therefore the above quantity

can be bounded:

Θ

(

∑

v∈⊤

|N(v)||N(v)|

)

⊆ O

(

δ⊤
∑

v∈⊤

|N(v)|

)

= O (δ⊤|L|) .

The second part of the loop performs Θ(|N(w)|) operations for each node w ∈ N⊥(u).

The total number of operations in this part of the loop is therefore performed in time:

Θ





∑

u∈⊥

∑

w∈N⊥(u)

|N(w)|



 = Θ

(

∑

w∈⊥

|N⊥(w)||N(w)|

)

.

This expression can be bounded in two ways, by considering that |N⊥(w)| ≤ ∆⊥ (where

∆⊥ = maxu∈⊥ |N⊥(u)| is the largest degree in B⊥) or that |N(w)| ≤ δ⊥ (where δ⊥ =

maxv∈⊥ |N(v)|). In the first case we obtain

Θ

(

∑

w∈⊥

|N⊥(w)||N(w)|

)

⊆ O

(

∆⊥

∑

w∈⊥

|N(w)|

)

= O (∆⊥|L|) .

In the second case we obtain

Θ

(

∑

w∈⊥

|N⊥(w)||N(w)|

)

⊆ O

(

δ⊥
∑

w∈⊥

|N⊥(w)|

)

= O (δ⊥|L⊥|) .

Finally, the third part of the loop iterates over all nodes in m. Since m was computed

in the second part of the loop, the number of operations in the third part of the loop is

bounded by the one for the second part of the loop, therefore we do not need to evaluate

it further.

The overall complexity of the algorithm is therefore in the order of

O (δ⊤|L|+min(∆⊥|L|, δ⊥|L⊥|)) ⊆ O ((δ⊤ +∆⊥)|L|) ⊆ O (∆⊥|L|) ,

because δ⊤ ∈ O(∆⊥) since each node in ⊤ with degree d induces a clique of d nodes, each

of them having a degree at least d− 1 in B⊥.

�

66 5.4. BIPARTITE PREDICTION METHODS

5.4.2 Collaborative filtering prediction

As explained in Section 5.2, typical collaborative filtering approaches consist in predict-

ing that ⊥-nodes tend to create links to the ⊤-neighbors of ⊥-nodes which are similar to

themselves (clients will buy products that similar clients already bought). More precisely,

such methods first select for each ⊥-node u the set of k ⊥-nodes which are the most similar

to u and then the N ⊤-nodes the most strongly linked to these nodes, for given parameters

k and N . Here, natural notions of similarity between ⊥-nodes are provided by the weighted

⊥-projection.

We will therefore use the following collaborative filtering method [35]: given a weight

function ω, we consider for each ⊥-node u the set Uk ⊆ N⊥(u) of its k neighbors with

largest weight. Then for each v ∈ N(Uk) \ N(u), we compute the score s(u, v) of the link

(u, v) as the sum of the weights ω(u, w), for each w ∈ N(v) ∩ Uk:

s(u, v) =
∑

w∈Uk∩N(v)

ω(u, w).

There are other possible ways to compute the score [35, 40, 60, 68, 138], however in this

chapter we restrict ourselves to the formula above which is typical. Finally, the collaborative

filtering method predicts for each node the N links with highest scores.

A B C D E

lkji

A B C D E

lkji

A

C

D
E

B

1/3

1/3

1/2
2/3

1/4

1/4

1/3

1/4

A B C

lkji

D E

1/3

1/3

B possible links (B⊥, γ) s(A, j) = 1
3
+ 1

3

A B C

lkji

D E
1/3 1/2

B C D

lkji

A E
1/2 2/3

C D E

lkji

A B 2/3 1/3 B D E

lkji

A 1/4

1/3

s(B, l) = 1
2

s(C, k) = 1
2

s(D, i) = 2
3

s(E, j) = 1
4
+ 1

3

Figure 5.3 – Example of collaborative filtering prediction. First row (left to right):
an example of a bipartite graph B, the set of all possible links that may appear, the Jaccard
weighted ⊥-projection of B (B⊥, γ), and the result of the collaborative filtering prediction
for node A. Second row (left to right): the result of collaborative filtering prediction for B,
C, D and E. In this example, k = 2 (we consider 2 most similar neighbors) and N = 1 (we
predict 1 link with highest score).

Figure 5.3 presents an example of collaborative filtering using the Jaccard weight func-

CHAPTER 5. LINK PREDICTION IN BIPARTITE GRAPHS 67

tion γ, k = 2 and N = 1. For instance, node E has three neighbors in the ⊥-projection:

N⊥(E) = {B,C,D}. The method then considers the k = 2 most similar ones, i.e. the

ones linked to E with the largest weight in B⊥. (E,D) has the largest weight. As (E,B)

and (E,C) have the same weight, the method chooses at random between B and C for

the second link. Suppose that U2 = {B,D}. The method then computes the score of links

(E, v) for all v ∈ (N(B)∪N(D))\N(E), leading to s(E, j) = γ(E,B)+ γ(E,D) = 7
12
, and

s(E, i) = γ(E,B) = 1
4
. Finally, as N = 1, it predicts the link with highest score i.e. (E, j).

Algorithm 2: Collaborative filtering

Input: bipartite graph B(⊥,⊤, L), weight function ω, k, N
Output: set P of predicted links

P = ∅
for u ∈ ⊥ do

Nbot← ∅
for v ∈ N(u) do

for w ∈ N(v)\{u} do
Nbot← Nbot ∪ {w}
compute ω(u, w)

U ← sort(Nbot(u), ω)
Uk ← head(U, k)
s← 0, 0, . . . , 0
for w ∈ Uk do

for v ∈ N(w)\N(u) do
s[v] ← s[v] + ω(u, w)

Pu ← sort(s)
P ← P ∪ {(u, v), v ∈ head(Pu, N)}

Let us present the details in Algorithm 2. The first part of the loop computes N⊥(u).

The corresponding time complexity is therefore in the order of O (δ⊤|L|) ⊆ O(∆⊥|L|), as

detailed in the proof of Theorem 1 (notations are defined there). The complexity of the

second part of the loops depends on parameters k and N . The sort and head instructions

are used to compute the k and N largest values in N⊥ (according to weight function ω)

and s, respectively. This can be done in constant time if k and N are constant, but we

kept this notation to make the algorithm easier to read.

The loop iterating over all nodes w ∈ Uk performs |N(w)| operations at each step. This

loop is repeated for all nodes u ∈ ⊥. The total number of operations performed is bounded

by O(
∑

u∈⊥

∑

w∈N⊥(u) |N(w)|) ⊆ O(∆⊥|L|).

The total time complexity is therefore in the order of O(∆⊥|L|), as Algorithm 1. The

68 5.5. EXPERIMENTAL SETUP

space complexity, besides the space needed to store B, is of the order of |⊤| + |⊥|, this

space being needed for storing Nbot, U, Uk, and s. This is the same as Algorithm 1.

5.5 Experimental setup

Evaluating our method in practice requires the availability of large scale bipartite data

with their dynamics. One natural source for such data might be benchmarks for recommen-

dation systems. However, such datasets often do not contain temporal information or have

been filtered to fit recommendation needs (for instance, nodes with a small degree have

been removed, as well as large degree ones). This makes them unusable in our context.

We did our best to obtain appropriate data for assessing our method and finally con-

ducted experiments on various datasets, in particular Delicious-tags, P2P-files and Flickr-

comments graphs. We detail here results obtained with a P2P-files dataset which are rep-

resentative of all obtained results.

We first describe the real-world datasets. We then discuss appropriate parameters for

our experimentation for both our method and the collaborative filtering one. We present

the results of our experimentations in Section 5.6.

5.5.1 P2P-files dataset

We focus here on file-provider relations, where a set D = {(ti, ui, vi)} of triplets indi-

cating that the server pointed peer ui as a provider for file vi at time ti.

Using the formalism described in Section 5.3, each triplet corresponds to a link between

a ⊥-node (a peer) and a ⊤-node (a file) at time ti. The ⊥-projection B⊥ of B is the graph

in which two peers are linked if they provide one or more files in common. For two given

timestamps x and y we consider:

– the reference period [0, x[and the corresponding reference graph B = (⊥,⊤, L) in-

duced by links observed from the beginning of the measurement (time 0) to time x,

and

– the prediction period [x, y[and the corresponding set of links L′ ⊆ (⊥×⊤)\L added

to B between x and y.

Basic features of the reference graph B are presented in Table 5.1, for different reference

period durations x. Notice that the number of ⊤-nodes (files) is much larger than the

number of ⊥-nodes (peers), which is mostly due to the fact that we consider only peers

which provide at least one file (most peers only download files).

CHAPTER 5. LINK PREDICTION IN BIPARTITE GRAPHS 69

duration x of the reference period [0, x[
x = 6 hours x = 12 hours x = 1 day x = 3 days x = 7 days

number of ⊥-nodes (peers) 82, 372 122, 817 160, 159 356, 197 705, 634
number of ⊤-nodes (files) 1, 474, 048 2, 060, 530 2, 456, 205 3, 938, 639 5, 703, 258
number of links in L 2, 764, 424 4, 259, 764 5, 634, 865 11, 851, 292 22, 334, 912

Table 5.1 – Number of ⊥-nodes (peers), ⊤-nodes (files), and links in the bipartite graph
B, for five different reference period durations x.

5.5.2 Parameters for prediction methods

The performances of link prediction methods depend on various parameters. We explore

in depth in the next section (Section 5.6) the impact of the reference and prediction period

durations, as well as the impact of the weight functions. Even when these parameters

are given, though, other parameters play a role: the weight threshold τ for internal link

prediction and the values of N and k for collaborative filtering prediction. Exploring all

possible values for all these parameters and their combinations is intractable in practice,

and would actually have limited interest here as we are mostly concerned with qualitative

results. We explain in this section how we choose values for these parameters for our

experiments while avoiding extensive exploration of all possible values.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision Recall F-measure

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 10 100 1000 10000 100000

Precision Recall F-measure

Figure 5.4 – Performances of two prediction methods (left: internal link prediction; right:
collaborative filtering with k = 50) for the reference period [0, 1 day[of one day, the
prediction period [1, 16 days[of 15 days, and the Jaccard weight function. We plot the
precision, recall, and F-measure (vertical axis), defined in Section 5.3, as functions of the
threshold τ (left), and the number N of predicted links per node (right).

70 5.6. EXPERIMENTAL RESULTS

Internal link prediction

As illustrated in Figure 5.4 (left), the performances of internal link prediction for given

reference and prediction periods and a given weight function depend on the weight threshold

τ. If τ = 0 then all possible internal pairs are predicted, which corresponds in this example

to 33% of all appearing links. However, many of these pairs do not actually appear, and

so the corresponding precision is almost zero. Instead, if a very high threshold is used then

only few internal pairs are predicted, and so the obtained recall is almost zero. However,

most of these few pairs do appear, which corresponds to a precision of almost 100%. More

generally, the precision increases with the threshold value, and the recall decreases. The

F-measure which captures a tradeoff between the two reaches its maximal value of 0.28 for

τ = 0.4 in this example.

To avoid taking into account the impact of the threshold τ on the internal link prediction

method, we will select in the experiments of Section 5.6 the value of τ which maximizes the

F-measure. For instance, when studying the impact of the prediction period duration x for

a given reference period (Section 5.6.1) we will plot the maximal value of the F-measure

as a function of x.

Collaborative filtering

As explained in Section 5.4.2, the collaborative filtering method depends on a parameter

k which is the number of similar neighbors considered for each node. We have experimented

the performances of the collaborative filtering algorithm for three values of k: 10, 50 and

100. Results indicate that the precision is slightly better for small values of k, but recall is

best for large values of k. The maximal F-measure was obtained for k = 50, therefore we

will use this value in all our experiments in the following.

The other parameter, N , is the number of links predicted for each node. It also has a

strong impact on the performance of the collaborative filtering method. Figure 5.4 (right)

shows that the precision decreases and the recall increases when N increases.

Again, to avoid taking into account the impact of N on the performances of the col-

laborative filtering method, we will select in the following the value of N which maximizes

the F-measure.

5.6 Experimental results

In this section, we study the performances of our approach for link prediction and

compare it to the collaborative filtering approach in the experimental framework described

above. We first explore the impact of the prediction period duration, which allows us

CHAPTER 5. LINK PREDICTION IN BIPARTITE GRAPHS 71

to choose a relevant value for this parameter for the rest of our comparisons. We then

study the impact of the reference period duration, and again select a relevant value for

this parameter. Finally, we compare the performances of the different weight functions for

these parameters.

5.6.1 Impact of the prediction period duration

In order to study the impact of the prediction period duration we consider several

reference periods [0, x[(from x = 1 hour to x = 7 days), and several prediction periods [x, y[

(y = x+1 day, y = x+2 days, ..., y = x+49 days). We then compute, for each considered

reference period duration, the maximal value of the F-measure observed over all values of

the threshold τ (for internal link prediction) and all values of N (for collaborative filtering),

and plot it as a function of the prediction period duration, as explained in Section 5.5.2.

Results are presented in Figure 5.5. The following key facts appear clearly:

– all plots have the same global shape (a fast increase followed by a slow decrease

or steady regime), although their amplitude decreases when the reference period

duration increases (we will deepen this in the next section);

– different weight functions give different results, which we deepen in Section 5.6.3;

– in most cases, and for all weight functions which perform well, internal link prediction

surpasses significantly collaborative filtering (notice the different scales for the vertical

axes for the two methods).

Finally, a prediction period of 15 days gives good results, and is representative of a wide

range of prediction period durations for all reference period durations and weight functions.

We will therefore use this prediction period duration in all the following.

72 5.6. EXPERIMENTAL RESULTS

1 hour 6 hours 12 hours

in
te
rn

a
l
li
n
k
p
re
d
ic
ti
o
n

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

co
ll
a
b
o
ra
ti
v
e
fi
lt
er
in
g

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

1 day 3 days 7 days

in
te
rn

a
l
li
n
k
p
re
d
ic
ti
o
n

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

co
ll
a
b
o
ra
ti
v
e
fi
lt
er
in
g

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

Figure 5.5 – Maximal value of the F-measure (vertical axis) as a function of the prediction
period duration (horizontal axis, in days) for both link prediction methods with different
weight functions. In order to help comparison between different reference period durations,
we used the same scale for the vertical axes. Notice however that the scales are not the
same for the two methods because otherwise the collaborative filtering plots would hardly
be readable.

CHAPTER 5. LINK PREDICTION IN BIPARTITE GRAPHS 73

5.6.2 Impact of the reference period duration

In order to investigate the impact of the reference period duration [0, x[, we vary its

duration x for x = 1, 2, ..., 48 hours, and we use the prediction period [0, x + 15 days[

of 15 days, as explained in the previous section. We do not consider reference periods

longer than 48 hours, because, as we can see in Figure 5.5, longer reference periods lead

to poorer performances. We compute for all cases the maximal value of the F-measure

observed over all values of the threshold τ (for internal link prediction) and all values of

N (for collaborative filtering) and plot it as a function of the reference period duration, as

explained in Section 5.5.2.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 5 10 15 20 25 30 35 40 45 50

sum
jaccard

delta
attachment

cosine
overlap

Figure 5.6 – Evolution of the maximal F-measure (vertical axis) as a function the reference
period duration (horizontal axis, in hours) for the different weight functions. Left: internal
link prediction. Right: collaborative filtering. The prediction period duration is 15 days in
all cases.

Results are presented in Figure 5.6. The following key facts appear clearly:

– overall, the maximal F-measure decreases with the size of the reference period (except

for very short reference periods with internal link prediction);

– different weight functions give different results, which we deepen in next section;

– in most cases, and for all weight functions which perform well, internal link prediction

surpasses significantly collaborative filtering.

Finally, a reference period of 1 day gives good results, and is representative of a wide range

of reference period durations. We will therefore use this reference period duration in all the

following.

74 5.7. DELICIOUS-TAGS AND FLICKR-COMMENTS DATASETS

5.6.3 Impact of the weight function

In this section, we observe the impact of the weight function on both considered pre-

diction methods. As explained in previous sections, we use reference period [0, 1 day[and

prediction period [1, 16 days[, which are representative of wide ranges of values for these

parameters. We then compute the precision and recall for all possible values of the thresh-

old τ for internal link prediction and all possible values of N for collaborative filtering; we

plot the obtained precision as a function of the obtained recall in Figure 5.7.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

sum
jaccard

delta
attachment

cosine
overlap

Figure 5.7 – Precision (vertical axis) as a function of recall (horizontal axis), for a 1 day
reference period [0, 1[and a 15 days prediction period [1, 16 days[, for all weight functions.
Left: internal link prediction; right: collaborative filtering. Each point corresponds to the
precision and recall obtained for a given value of τ or N .

A first important observation is that the weight functions considered clearly split into

two classes regarding the performances of internal link prediction (Figure 5.7, left): sum,

Jaccard and cosine reach very high values of precision, and are also able to reach very

good compromises between precision and recall (like a precision of 50% and a recall of

20%); instead, delta, overlap and attachment lead to poor performances of internal link

prediction. No such behavior is observable for collaborative filtering (Figure 5.7, right): all

weight functions lead to very similar results except attachment which performs worse than

the others.

5.7 Delicious-tags and Flickr-comments datasets

We present here the results obtained for theDelicious-tags and Flickr-comments datasets.

For each one, we choose reference and prediction periods which are representative of wide

CHAPTER 5. LINK PREDICTION IN BIPARTITE GRAPHS 75

ranges of values for these parameters. Basic features of the reference graph B and the

fraction of internal pairs appearing during the prediction period are presented in Table 5.2,

for the two datasets.

Delicious-tags Flickr-comments
n⊥ 13, 851 16, 281
n⊤ 21, 398 18, 578
|L| 435, 830 93, 016
reference period 12 months 3 months
prediction period 24 months 12 months
fraction of internal pairs in L′ 21% 67%

Table 5.2 – Number of ⊥-nodes, ⊤-nodes, links in the bipartite graph B, durations of the
reference and prediction periods, and fraction of internal pairs among the new links in the
prediction period, for the Delicious-tags and Flickr-comments graphs.

Results are presented in Figures 5.8 and 5.9. The following key facts appear clearly:

– different weight functions give different results, depending on the datasets;

– overlap leads to poor performances of internal link prediction for the two datasets;

– all weight functions lead to very similar results for collaborative filtering;

– different values of recall are observed in collaborative filtering. This is due to the fact

that each weight function considers a different set of k similar neighbors of the node,

and this leads to a different set of predicted links;

– in the two datasets, and for all weight functions which perform well, internal link

prediction surpasses significantly collaborative filtering (notice the different scales for

the vertical axes for the two methods).

76 5.8. CONCLUSION

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sum
jaccard

delta
attachment

cosine
overlap

Figure 5.8 – Precision (vertical axis) as a function of recall (horizontal axis), for a 12
months reference period [0, 12[and a 24 months prediction period [12, 36 months[, for all
weight functions. Left: internal link prediction; right: collaborative filtering. Each point
corresponds to the precision and recall obtained for a given value of τ or N .

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sum
jaccard

delta
attachment

cosine
overlap

Figure 5.9 – Precision (vertical axis) as a function of recall (horizontal axis), for a 3 months
reference period [0, 3[and a 12 months prediction period [3, 15 months[, for all weight func-
tions. Left: internal link prediction; right: collaborative filtering. Each point corresponds
to the precision and recall obtained for a given value of τ or N .

5.8 Conclusion

In this chapter, we use a specific notion related to bipartite graphs introduced in the pre-

vious chapter, internal pairs, to propose a method addressing the link prediction problem.

We evaluate the relevance of this method by comparing it to a classical collaborative filter-

ing approach and perform experiments on various datasets, which show that our method

CHAPTER 5. LINK PREDICTION IN BIPARTITE GRAPHS 77

performs very well. We present in details the results obtained for a P2P-file exchange graph

in order to illustrate how results depend on various parameters, including which weight

function is used for projection. We present more quickly results for two other datasets.

Our link prediction method has the following advantages. First, it performs very well,

much better than a collaborative filtering approach, where no other method was previously

available. Moreover, our method is purely structural: it relies on the identification of a

specific kind of links which will probably appear in the future; this gives much insight on

the properties of the underlying dynamics. Finally, the use of weight thresholds allows to

tune the method in order to reach target tradeoffs in the quality of the prediction: one

may use small thresholds to have excellent precision at the cost of a poorer recall, and

conversely.

Our work may be extended in several ways. In particular, other (maybe more specific)

weight functions may be introduced and tested. One may also predict internal pairs that

induce only links with weight above the threshold (inducing one such link is sufficient in

our current algorithm), or use both ⊤- and ⊥-projections (our current algorithm only uses

the ⊥- one). There is therefore room for improving the method and its results.

Likewise, it would be interesting to conduct more experimentations and compare results

on different datasets. Comparing our method with others, in particular machine learning

approaches like the one presented in [29] is also appealing. Last but not least, our work

calls for the development of link prediction methods for external pairs (those links which

are not internal), which may be done with such methods or by modifying ours.

Another interesting direction would be to modify our approach in order to perform

recommendation. As already explained, link prediction and recommendation are quite dif-

ferent problems, but they are strongly related. Just like we adapted collaborative filtering

for link prediction in bipartite graphs, one may adapt our method and evaluate its relevance

for recommendation.

Finally, notice that any graph G = (V,E) may be seen as a bipartite graph B =

(⊥,⊤, E) such that ⊤ and ⊥ are the nodes in classical graph, and each node in ⊤ is

linked to its neighbors in G. Using this, one may use our bipartite link prediction method

for classical graphs, thus making it more general. Evaluating of this approach seems an

interesting perspective.

78 5.8. CONCLUSION

Chapter 6
Conclusion

We have studied in this thesis real-world bipartite networks: their nodes may be sep-

arated into two classes, with links between nodes of different classes only. The approach

classically used for studying these objects consists in transforming them into classical (non-

bipartite) graphs where two nodes in the classical graph are linked if they have at least one

neighbor in common in the bipartite graph. This process is called projection. However, it

induces an important loss of information and leads to very large graphs. Studying bipartite

graphs directly therefore is very appealing, but there is a lack of ground methods for doing

so.

In addition, most of these networks are dynamic: they evolve during time, with node and

link additions and removals. Studying such dynamics is extremely important for our under-

standing of these objects, but here again very limited knowledge and ground methodology

is available, even for classical (non-bipartite) dynamic graphs. One of the main approaches

developed for studying such dynamics is link prediction, which consists in identifying pairs

of nodes which will be linked in the future.

We have addressed in this thesis the problem of analysis and link prediction in bipartite

graphs. To do so, we have introduced a special kind of links that we have call internal links.

These links have the specificity that their deletion does not change the projection of the

bipartite graph.

Internal links may be used for measuring redundancy in bipartite graphs, and for mea-

suring the information lost between a bipartite graph and its projections. Using a wide

set of real-world examples, we observed that internal links are very frequent in practice,

and that associated statistics are fruitful measures to point out similarities and differences

among real-world networks. In addition, our notion is designed specifically for bipartite

79

80

graphs. Moreover, removing internal links may be used to obtain compact bipartite encod-

ings of graphs and to improve their modeling. This makes it as a relevant tool for analysis

of bipartite graphs, which is an important research topic.

We have shown that internal links appear with high probability in the future evolution

of the graph, and therefore that they play an important role regarding the dynamics.

We have proposed a method based on internal links for addressing the link prediction

problem in bipartite networks. We evaluated the relevance of this method by comparing

it to a classical collaborative filtering approach and performed experiments on various

datasets, which show that our method performs very well. In addition, our method is purely

structural: it relies on the identification of a specific kind of links which will probably appear

in the future; this gives much insight on the properties of the underlying dynamics.

The work conducted in this thesis opens several perspectives. We have already presented

the direct perspectives of our work, at the end of each chapters. We present more general

ones below.

We can complete our classification by studying the external links and pairs (those links

and pairs which are not internal) and define other specific classes of links. Typically, we

can study their role regarding the structure and the dynamics of bipartite networks. In

addition, we can observe their impact on the projection since their addition in, or removal

from, the bipartite graph changes its projections. We can also isolate the set of links (and

pairs) which are simultaneously ⊥- and ⊤-external. This distinction will allow a better

understanding of bipartite graphs without considering ⊤ and ⊥ separately.

Another relevant investigation consists in observing the impact of internal links on

weight functions. In fact, in some weight functions (Jaccard for instance), adding an internal

link may increase the weight for some links and decrease it for others. There are therefore

nontrivial relations, which call for further understanding.

We have studied specific graph dynamics in which nodes can be added, but never

removed. The next step is to study the generic case where links can also be removed. In

particular, we can study whether these links are with high probability internal or external

links. We can also observe the time required for a link to become internal or external.

Going further, taking into account the dynamics of nodes (addition and removal of nodes)

is an important but challenging perspective.

Internal links can also be considered as useless information regarding the projection;

deleting them from a bipartite graph gives a smaller dataset able to store the information

contained in the projected graph. However, as we underlined, the deletion of an internal

CHAPTER 6. CONCLUSION 81

link can change the nature of other bipartite links. The challenge here consists in designing

removal strategies which give a bipartite graph with no internal link but still the same

projection (and so a minimal graph to this regard). It is not possible in general to delete

all initial internal links without altering the structure of the projection. We suggested

a possible way to do this by implementing a greedy algorithm that selects a link which

minimizes the decrease of number of remaining internal links, but most remains to be done.

In some cases a bipartite graph is available without any information on its dynamics.

Reconstructing the order in which links appeared is important for giving insight on the

object. In addition, if the analysis of the whole graph is not feasible, because of its size

and various other constraints, then cutting the graph into several snapshots is a relevant

solution, but this is possible only when we know the order of appearance of links.

In a preliminary study, we have considered a set of links of which we know the timestamps.

We then added randomly these links one by one, and at each time we computed the number

of internal links in the bipartite graph. We have observed that this gives different results

from what is observed in reality. This shows that the internal links play an important role

regarding the order in which links are added.

To rebuild the order of appearance of links, one way consists in designing a function based

on the number of internal links and pairs that is able to decide if a given link may be added

to the current bipartite graph or if it should be added later.

Finally, a key perspective is to design models for bipartite graphs. When modeling

complex networks using random bipartite graphs, the presence of internal links may be a

problem as they are poorly captured by models. To this regard, removing internal links

before generating a random bipartite graph may lead to better models.

Another interesting possibility consists in generating bipartite graphs with prescribed

degree and internal degree distributions. The challenge would be to connect nodes in such

a way that the final graph contains the desired number of internal links. This is difficult

because creating a new link may cause previous internal links to become external, and

vice-versa.

Another approach consists in developing a model of bipartite graph which allows by

construction to capture those properties of internal links that make real graphs different

from random ones. This process would take as input the number of nodes and desired

fraction of internal links, and then generate bipartite graphs with the given fraction of

internal links.

Such models would produce artificial graphs similar to real ones, which would allow to

conduct more realistic simulations, and in particular to investigate the role of internal links

in various situations.

82

Appendix A
A peer-to-peer measurement

A.1 Introduction

Real-world complex networks are in general not directly available: collecting data about
them requires the use of measurement procedures. Much work has been done in this di-
rection for the case of peer-to-peer system [3, 84, 122]. The most widely used approach is
to watch the activity in a network of interest for a period of time. This raises important
difficulties due mainly to the distributed and anonymous nature of peer-to-peer systems,
their dynamics, and their sheer size.

In this appendix, we present such a contribution conducted during this thesis. We
explore a new method for collecting information on what occurs in one of the main peer-
to-peer systems currently in use, eDonkey 1. It consists in introducing honeypots in the
network, i.e peers pretending to offer files and logging all the queries they receive for these
files from other peers.

We begin by presenting the current state of the art of peer-to-peer measurement (Sec-
tion A.2), and then we describe the new solution we propose (Section A.3). Finally we will
illustrate its relevance with some practical measurements (Section A.4), before presenting
our conclusions (Section A.5).

A.2 Related work

Measurement of peer-to-peer systems is a very active area of research. We focus here
on the measurement of peer activity, thus ignoring measurements of peer-to-peer overlays
and protocols. Several approaches have been used to collect information on peer-to-peer

1. eDonkey is a semi-distributed peer-to-peer file exchange system based on directory servers. An un-
official documentation of the protocol is available [75].

84 A peer-to-peer measurement Chapitre A

activity, each with its own advantages and drawbacks. We rapidly describe them in this
section.

A.2.1 Measurement at server level

In centralized or semi-centralized systems (like eDonkey), queries sent by peers are
managed by servers; it is then possible to passively collect data directly on these servers.
The measurement setting then consists in either modifying the server so it may log the
queries it manages [64, 81], or capturing traffic at IP level and then decoding it [8].

This method has the advantage of collecting all the information managed by a given
server. However, as actual file exchanges occur between peers (out of the sight of servers),
this information is not captured. Moreover, it requires cooperation with server administra-
tors.

A.2.2 Measurement at peer level

Passive measurements are also possible in fully distributed systems at client level: a
modified client may observe the traffic going through it including in some cases keyword
queries, file searches, etc.

In [3, 6, 71, 84] authors set up such measurements. The main issue of this approach
is the need for users that agree to cooperate, which limits the amount of data obtained.
To increase it, the author of [139] designed a large distributed architecture called GnuDC
(Gnutella Distributed Crawler); it monitors the network by being attached to a large
number of peers.

A.2.3 Measurement by client sending queries

An active measurement method from clients is also possible. It consists in designing
a client that sends queries in the system and records the obtained answers (lists of files
and providers, typically). This has been done in Napster [119] and eDonkey [66, 83] with
success. The main drawback of this approach is that it is active: it may interfere with the
observations, and the rate at which queries may be sent is limited.

A.2.4 Measurement at ISP level

Finally, one may capture peer-to-peer traffic directly on ISP infrastructures, in a passive
way. In [72,116,122] for instance, data is collected from several routers, and different peer-
to-peer applications (Gnutella, FastTrack, DirectConnect, eDonkey) are observed.

This approach provides network-level data, with limited information on users and ex-
changed files. This makes it quite different from other approaches discussed here. Moreover,
it relies on cooperating with ISPs, which have limited rights to observe user traffic.

A.3 Measurement of eDonkey Activity with Distributed Honeypots 85

A.3 Measurement of eDonkey Activity with Distributed

Honeypots

Our measurement infrastructure consists in a set of fake peers (the honeypots) con-
nected to different servers, and a manager controlling these honeypots. We first present
our manager and honeypots, and then we discuss privacy concerns.

A.3.1 Manager.

The manager’s role is to set up the honeypots, and then coordinate them and centralize
the data they collect.

The first function of the manager is to launch the honeypots. It specifies to each of them
a server to connect to. Each honeypot then attempts to connect to the server, and reports
its status (connected or not), as well as its clientID 2, if relevant, to the manager. This
makes it possible to re-launch dead honeypots or to redirect them toward other servers.
The manager regularly checks the status of each honeypot for the same reason.

Several strategies make sense for assigning honeypots to servers. One may typically
choose a different sever for each honeypot, in order to obtain a more global view. The
choice of servers may also be guided by their resources and number of users, so that the
honeypots may reach the largest possible number of peers.

The second function of the manager is to tell honeypots to advertise fake files. It
specifies the name, size and fileID 3 of each file. Again, many strategies are possible to
choose the files to advertise, and the manager is in charge of implementing the chosen
strategy. For instance, it is possible to study the activity on a specific topic by choosing
the files accordingly. One may then ask to the discovered peers their list of shared files and
add these files to the the honeypot’s list. One may also advertise random files.

Finally, the manager periodically gathers the data collected by honeypots and does
some basic data management (for instance, it merges and unifies the collected log files, see
below).

A.3.2 Honeypots.

After receiving an order from the manager to advertise a file F , the honeypot adds this
file to its shared file list. The eDonkey server then adds the honeypot to its list of providers
for file F . A honeypot may therefore afterward be contacted by other peers looking for F .

2. In the eDonkey network, peers are identified by a clientID, which is their IP address if they are
directly reachable (high ID) or a 24 bits number otherwise (low ID).

3. In the eDonkey network, files are identified by their fileID or hash. It is generated from the file’s
content, which ensures that two files with the same content are considered as identical, regardless of their
names.

86 A peer-to-peer measurement Chapitre A

Notice that, due to peer exchange [127] and other high-level eDonkey features, the honeypot
may be contacted by peers which are not connected to the server.

Each honeypot constructs a log file of all the queries it receives. The log file can be
written directly on a hard disk or sent via network to the monitor.

Before going any further, we specify that, for each query, the honeypot saves the infor-
mation contained in the eDonkey protocol concerning the message type, as well as meta-
data such as the IP address, port, name, userID 4, version of client and ID status (high
or low) of the peers sending the queries; moreover, it collects information concerning the
server (name, IP, port), as well as data concerning the network environment (such as the
timestamps marking the reception of the packets by the system).

Once a peer is connected to a honeypot, the list and description of all shared files in its
cache content are retrieved. Note that this feature is not available on all peers, as it can
be disabled by the user.

A honeypot must pass for a normal peer on the network. For this purpose, we have
modified the open-source eDonkey client Amule [1] so that it meets our needs. We detail
the main modifications below.

File display. In the normal course of events, if a client has files to offer (the client
application considers that all files belonging to a given directory are files to be shared with
other users), an OFFER-FILES message describing these files is sent immediately after
the connection to the server is established, or whenever the client’s shared file list changes.
This message can also be used as a keep-alive message, sent periodically to the server.

As our honeypots do not have any file in their shared file folder, we have added a
module to change the shared file list, so that the honeypot automatically sends the desired
OFFER-FILES messages to the server.

Communication with other peers. When a honeypot is connected to a server and
advertises some files, it may be contacted by other peers wanting to download one of
these files. The normal message exchange process between a peer wanting to download a
file and a peer having the file is presented in Figure A.1. The downloading peer tries to
establish a connection with a HELLO message, to which the provider peer answers with
a HELLO-ANSWER message. The downloading peer sends a START-UPLOAD query,
declaring which file it is interested in; the provider replies with an ACCEPT-UPLOAD
message. The downloading peer then starts to query file parts and the provider sends the
queried parts.

Our honeypots behave like provider peers up to the last part of the exchange: they do
not send parts of the desired file to the downloading peer. In this aspect, honeypots do
therefore not act as normal peers in the system, and run the risk of being noticed and then

4. The user ID (also called user hash) is unique and is used to identify a client across sessions,however,the
client ID is valid only through a client’s session with a specific server [75].

A.3 Measurement of eDonkey Activity with Distributed Honeypots 87

1−HELLO

2−HELLO−ANSWER

REQUEST−PART

SENDING−PART

4−ACCEPT−UPLOAD

3−START−UPlOAD

Figure A.1 – Series of messages exchanged between honeypots and peers.

blacklisted. To avoid this, we have implemented two different strategies for answering file
parts queries. The first one consists in sending nothing: the corresponding honeypots do
not reply to file parts queries. The other strategy consists in sending random content when
queried for file parts.

Log file construction. Our goal is to record users’ activity concerning the files a honey-
pot advertises. We have therefore modified the application to record the following message
types received from other peers: HELLO, START-UPLOAD, and REQUEST-PART.

A.3.3 Privacy concerns

For ethical and legal reasons, we cannot record any sensitive data concerning users’
privacy. In our context, the main such data are IP addresses and filenames. We want
however to be able to know if a same user requested several files or not.

In order to attain a high level of anonymisation, while keeping the anonymised data
coherent, we follow a two-steps procedure. First, each honeypot encodes IP addresses in its
log using a one way hash function, cryptographically sure. This anonymisation takes place
before any data is written to disk or sent to the manager. This is however not sufficient to
achieve a secure anonymisation of IP addresses: somebody could apply the hash function to
all 232 possible IP addresses, to construct a reverse dictionary of the anonymisation. After
having collected the data from the honeypots, the manager therefore conducts a second
anonymisation step: it replaces each hash value, in a coherent way between honeypots’
logs, by an integer: the first hash is replaced by 0, the second one by 1, and so on. This
ensures that the final anonymised data is secure, and that it is not possible to obtain the
users’ IP addresses from it.

In addition, we also anonymise file names which may contain personal information [5,

88 A peer-to-peer measurement Chapitre A

15]. We replace each word that appears less often than a given threshold by an integer.

A.4 Experiments

Many parameters may have a strong impact on the measurements conducted with
our tool: which files the honeypot claims to have; number of honeypots in a distributed
measurement; number of files advertised by the honeypot; duration of the measurement;
etc.

In this section, we study several measurements which we have conducted to illustrate
what is feasible with our approach and tool, and to investigate the impact of some key
parameters. This relies on two different measurements:

– The distributed measurement used 24 honeypots ran by different PlanetLab [2] ma-
chines during one month (October 2008). Among the 24 honeypots, half did not
answer at all to queries received from other peers; the others sent files with random
content to the peers contacting them (see Section A.4.2 below). All honeypots ad-
vertised the same four files (a movie, a song, a linux distribution and a text). They
were all connected to the same large server and had a HighID.

– The greedy measurement used only one honeypot but aimed at advertising as many
files as possible. To do so, the honeypot ran a two-steps procedure: during the first
day of measurement, it asked their list of shared files to all peers contacting it, and
added all these files to its own list of shared files; after the first day, it did not increase
its list of shared files anymore, and just recorded the queries it received and the lists
of files shared by peers contacting it. It did not send any content to other peers. We
ran this measurement during the two first weeks of November 2008.

The key properties of the obtained data are summarized in Table A.1. These statistics
already show that our measurement method succeeds in collecting large amounts of data,
with hundreds of thousands distinct peers and files observed.

distributed greedy
Number of honeypots 24 1

Duration in days 32 15
Number of shared files 4 3,175

Number of distinct peers 110,049 871,445
Number of distinct files 28,007 267,047

Space used by distinct files 9 TB 90 TB

Table A.1 – Basic statistics regarding the data collected with our measurements.

In the following, we investigate the impact of four key parameters of the measurement:
its duration; the fact that honeypots send random content or no content at all; the number
of honeypots involved; and the number of advertised files.

A.4 Experiments 89

A.4.1 Impact of measurement duration

Let us first observe how the number of distinct observed peers evolves as the dura-
tion of the measurement grows, displayed in Figures A.2 and A.3 for the distributed and
greedy measurements respectively. It appears clearly that the number of observed peers
grows rapidly, and linearily, during all the measurement. Even after 30 (resp. 15) days,
the number of distinct peers observed by the distributed (resp. greedy) measurement still
grows significantly: more than 2, 500 (resp. 50, 000) new peers per day.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 5 10 15 20 25 30 35
 0

 1000

 2000

 3000

 4000

 5000

 6000

T
ot

al
 n

um
be

r
of

 p
ee

rs

N
um

be
r

of
 n

ew
 p

ee
rs

Days

total peer
new peers

Figure A.2 – Evolution of the number of distinct peers observed during our distributed
measurement (left vertical axis) and number of new peers observed each day (right verti-
cal axis) as a function of time elapsed since the beginning of this measurement, in days
(horizontal axis).

These observations are of prime importance for conducting measurements: they show
that conducting very long measurements is relevant, as one continuously discovers a signif-
icant amount of new peers. They also show that blacklisting, even if it is present, does not
prevent us from observing many peers despite the fact that our honeypots never provide
any useful content. We deepen this in the next section.

The number of new peers discovered each day is also displayed in Figures A.2 and A.3.
It decreases during time in the distributed measurement, which is probably due to the fact
that the popularity of shared files decreases. This may also be due to the fact that we reach
a situation where most peers interested in the files proposed by the honeypot already have
contacted it. In any case, the important point here is that this happens only after a very long
measurement duration (one month), and that even then the number of new observed peers
remains large (more than 2, 500 per day). This shows that continuing the measurement for
long periods of time makes sense, even with 24 distributed honeypots advertising only 4
files. In such a scenario, one may have guessed that all the peers potentially interested in
the proposed files, or most of them, would have been observed before 30 days. Of course,

90 A peer-to-peer measurement Chapitre A

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 2 4 6 8 10 12 14 16 18
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

T
ot

al
 n

um
be

r
of

 p
ee

rs

N
um

be
r

of
 n

ew
 p

ee
rs

Days

total peer
new peers

Figure A.3 – Evolution of the number of distinct peers observed during our greedy measure-
ment (left vertical axis) and number of new peers observed each day (right vertical axis)
as a function of time elapsed since the beginning of this measurement, in days (horizontal
axis).

this depends on the popularity of the proposed files.
One may also notice that the number of peers observed during the first day of our

greedy measurement (Figure A.3) is very low; this is due to the initialisation phase of
this measurement strategy, as described above: during the first day, the honeypot mainly
constructs its large list of shared files, starting with only a few. The number of observed
peers during this period of time is non-zero, but it is much smaller than after the initiali-
sation phase and thus it is not visible on the plot. After this initial period, the honeypot
observes an average of 54, 000 new peers each day, which is stable during the 15 days of
measurement.

A.4.2 Random content vs no content.

When contacted by peers wanting an advertised file, honeypots may apply two different
strategies: they may simply ignore these queries and not answer them; or they may send
random content. These strategies may play an important role in avoiding blacklisting at
server and/or peer levels: if the system detects that honeypots do not provide relevant
content, then other peers may stop contacting them. We do not consider the strategy
consisting in providing the true files, which would raise bandwidth and storage problems,
as well as legal and ethical issues in many cases.

In order to investigate this, half the honeypots in our distributed measurement applied
the first strategy, and half applied the second one. This leads to two groups of 12 hon-
eypots, which we call no-content and random-content, respectively. Figures A.4 and A.5
show the number of distinct peers sending HELLO and START-UPLOAD messages (see

A.4 Experiments 91

Figure A.1) observed by each group during our measurement. Similarily, Figure A.6 dis-
plays the number of REQUEST-PART messages they received. Similar plots are obtained
for each file advertised by our honeypots, independently (recall that the honeypots of this
measurement setup advertised 4 different files).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 5 10 15 20 25 30 35

N
um

be
r

of
 p

ee
rs

Days

random content
no content

Figure A.4 – Number of distinct peers sending HELLO messages to our two groups of
honeypots in our distributed measurements (vertical axis) as a function of time elapsed
since the beginning of measurement, in days (horizontal axis).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 5 10 15 20 25 30 35

N
um

be
r

of
 p

ee
rs

Days

random content
no content

Figure A.5 – Number of distinct peers sending START-UPLOAD messages to our two
groups of honeypots in our distributed measurements (vertical axis) as a function of time
elapsed since the beginning of measurement, in days (horizontal axis).

All these plots clearly show that, although the difference is not huge, the random-
content strategy leads to better results than the no-content one. This is particularly striking
regarding the HELLO and START-UPLOADmessages, as the two strategies behave exactly

92 A peer-to-peer measurement Chapitre A

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 5 10 15 20 25 30 35

N
um

be
r

of
 R

E
Q

U
E

S
T

-P
A

R
T

 q
ue

rie
s

Days

random content
no content

Figure A.6 – Number of REQUEST-PART messages received by our two groups of hon-
eypots in our distributed measurements (vertical axis) as a function of time elapsed since
the beginning of measurement, in days (horizontal axis).

in the the same up till this point. This demonstrates that, even though we still discover
many new peers, there is some kind of blacklisting of honeypots, and that this blacklisting
is more efficient when the honeypot sends no content. This is probably due to the fact that
detecting honeypots which send invalid content takes more time than detecting honeypots
which send nothing.

The larger difference between strategies regarding the number of REQUEST-PART
messages, as observed in Figure A.6 (we finally observe 1, 9 million queries with the random-
content strategy, and only 1, 5 million with the no-content strategy), may be explained as
follows. First, when a peer receives irrelevant data or no data from our honeypots, it may
stop using it. Detecting the fact that the honeypot sends random content is also longer
than detecting that it does not answer, and thus a peer may send queries for more file parts
in this case before deciding not to consider the honeypot anymore. This may be seen as an
implicit blacklisting at client level, which stops using a honeypot after it observed that it
sends no useful content.

Finally, these plots show that the random-content strategy is significantly more efficient
than the no-content one. Other blacklisting techniques may operate, but we cannot observe
them with our data.

In order to investigate further the difference between the random-content and no-content
strategies, we plot in Figure A.7 (resp. Figure A.8) the number of START-UPLOAD (resp.
REQUEST-PART) messages received by our two groups of honeypots from a single peer.
The plot for HELLO messages is very similar to Figure A.7 so we do not reproduce it here.

The peer we have chosen is the one which sent the largest number of queries to our
honeypots. For some periods of time, it does not send any queries (which induces a plateau
on the plots), but in general this peer sends queries as fast as it can, provided that the

A.4 Experiments 93

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35

N
um

be
r

of
 S

T
A

R
T

-U
P

LO
A

D
 q

ue
rie

s

Days

random content
no content

Figure A.7 – Number of START-UPLOAD messages received from a single peer by our
two groups of honeypots in our distributed measurements (vertical axis) as a function of
time elapsed since the beginning of measurement, in days (horizontal axis).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35

N
um

be
r

of
 R

E
Q

U
E

S
T

-P
A

R
T

 q
ue

rie
s

Days

random content
no content

Figure A.8 – Number of REQUEST-PART messages received from a single peer by our
two groups of honeypots in our distributed measurements (vertical axis) as a function of
time elapsed since the beginning of measurement, in days (horizontal axis).

previous query was finished before it sends the next one.
The fact that it sends significantly less queries to our no-content honeypots than to our

random-content ones confirms that the queries which receive no answer are sent at a lower
rate than the ones which receive random content, as claimed above. This also explains
the fact that the plot for no-content is smoother than the one for random-content, see
Figure A.8: the time between two queries to a no-content honeypot is constant (it is the
timeout of the peer waiting for an answer), while for random-content this time may vary.

Notice however that this is not sufficient to explain the difference between the two

94 A peer-to-peer measurement Chapitre A

strategies observed in Figures A.4 and A.5, as they display the number of distinct peers
(not messages) observed. As explained above, this is certainly due to a combination of
some kind of client-level blacklisting combined to the difference of speed at which a query
is processed when sent to no-content and random-content honeypots.

A.4.3 Impact of the number of honeypots.

Our tools makes it possible to conduct honeypot measurements from a large number of
machines at the same time, in a distributed manner. In this section, we explore the benefit
of this feature: one may imagine that increasing the number of honeypots does not improve
the measurement, at least as soon as a quite small number of honeypots are in place. The
key question we want to address here therefore is: given a number n of honeypots, what is
the benefit of adding one more honeypot to the infrastructure.

To investigate this, we use our distributed measurement involving 24 honeypots, and
explore what we would have seen if only a part of them were used. To do so, we select
n random honeypots among the 24 ones, for n between 0 and 24, and we compute the
number of distinct peers observed by these n honeypots alone. As the choice of the n
honeypots may have a significant influence on the result, we repeat this computation 100
times (we would ideally consider all 224 possible subsets of our honeypots, but this is not
feasible), and we plot the average, maximal, and minimal obtained values, see Figure A.9.
The average makes it possible to observe what one may expect. The maximal and minimal
values give an indication of the dispersion of obtained results. In this case, they are quite
close to the average, except at the very beginning of the plot (a honeypot leads to the
observation of as many as 37, 000 peers, while another only sees 13, 000).

This plot clearly shows that there is an important benefit in using a few honeypots
rather than only one. It also shows that, even when 24 honeypots are used, there is a sig-
nificant benefit in adding more honeypots, thus calling for the use of large-scale distributed
infrastructures. However, the benefit obtained by using more honeypots progressively de-
creases. This indicates that, even though many more honeypots may be used, at some
reasonable point the benefit will become very low.

A.4.4 Impact of the number of files.

A natural way to increase the number of peers observed by our honeypot measurements
is to increase the number of files we advertise, thus reducing the focus of the measurement.
This is the aim of our greedy measurement, which starts by collecting for one day the list
of files shared by the peers contacting a honeypot, and then adds all these files to the list
of files shared by the honeypot, as described above.

Similarly to the previous section, we consider a measurement with a given number of
files, and then, for any n lower than or equal to this number, we study the number of peers
we would have observed if we used only n of these files in our measurement. Here, we could

A.4 Experiments 95

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
um

be
r

of
 p

ee
rs

Number of honeypots

lower bound of 100 samples
average of 100 samples

upper bound of 100 samples

Figure A.9 – Number of distinct peers observed at the end of the measurement (vertical
axis) as a function of the number n of involved honeypots (horizontal axis). For each n,
we sample 100 random sets of n honeypots and plot the average, minimal and maximal
obtained values.

in principle consider the 3, 175 files advertised in our measurement. However, this is not
feasible in practice; we therefore consider two subsets of files: the random-files are a set
of 100 randomly chosen files; and the popular-files are the 100 files for which we received
queries from the largest number of peers.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 10 19 28 37 46 55 64 73 82 91 100

N
um

be
r

of
 p

ee
rs

Number of files

lower bound of 100 samples
average of 100 samples

upper bound of 100 samples

Figure A.10 – Number of distinct peers observed at the end of the greedy measurement
(vertical axis) as a function of the number n of advertised files in the random-files set
(horizontal axis). For each n, we sample 100 random sets of n files and plot the average,
minimal and maximal obtained values. In average, each new file leads to the discovery of
approximately 1, 000 new peers.

96 A peer-to-peer measurement Chapitre A

 0

 50000

 100000

 150000

 200000

 250000

 300000

 1 10 19 28 37 46 55 64 73 82 91 100

N
um

be
r

of
 p

ee
rs

Number of files

lower bound of 100 samples
average of 100 samples

upper bound of 100 samples

Figure A.11 – Number of distinct peers observed at the end of the greedy measurement
(vertical axis) as a function of the number n of advertised files in the popular-files set
(horizontal axis). For each n, we sample 100 random sets of n files and plot the average,
minimal and maximal obtained values. In average, each new file leads to the discovery of
approximately 2, 700 new peers.

For these two sets of files, we select n random ones among the 100 in the set, for n
between 0 and 100, and we compute the number of distinct peers sending queries for at
least one of these files. As the choice of the n files may have a significant influence on the
result, we repeat this computation 100 times (we would ideally consider all 2100 possible
subsets of files, or even the 23 175 ones, but this is not tractable), and we plot the average,
maximal, and minimal obtained values, see Figures A.10 and A.11.

In both cases, the average, minimal and maximal values behave similarly, but the differ-
ence in the number of peers observed at the end of the measurement (100, 000 for random-
files and 270, 000 for popular-files) clearly shows that the advertised files have a significant
impact on the obtained data. This is confirmed for any number of files; in particular,
the most popular file leads to the discovery of 13, 373 peers, while some files lead to the
observation of 2 peers only.

Importantly, these plots also show that the number of peers increases significantly and
linearily as we add more files to our shared files list. This shows that the greedy approach
certainly is relevant if one aims at observing huge number of peers, and that advertising
more than 100 files definitively is relevant.

A.5 Conclusion.

We have described a method for peer-to-peer measurement via honeypots and imple-
mented it on the eDonkey network. This method makes it possible to collect large amounts

A.5 Conclusion. 97

of data on peers searching for files. It complements other approaches and has its own ad-
vantages and drawbacks: it makes it possible to focus on a topic of interest, or even a
specific file; it does not require cooperation with a server administrator and/or an ISP; but
it gives a very partial view; and it may interfere with the systems as it is active.

We have illustrated the use of our approach by conducting some measurements which
show that it is relevant: it captures information on many peers and files (hundreds of
thousands) during long periods of time (several weeks), and using a relatively large number
of distributed honeypots (24).

Using these measurements, we have evaluated several strategies and parameters. First,
we studied the impact of measurement duration, and showed that it is useful to make very
long measurements, as we continuously observe new peers and files. Then we compared the
results obtained by sending random content to other peers vs not answering to their queries;
there is no huge difference between the two, but sending random content is more efficient.
We then studied the impact of the number of honeypots involved in a measurement, and
the impact of the number of files they advertise; we showed that increasing both makes
measurements much more efficient in terms of the number of observed peers and files.

98 A peer-to-peer measurement Chapitre A

Annexe B
Résumé en français

B.1 Introduction

On peut modéliser de nombreux objets issus du monde réel par des graphes. On peut
citer de nombreux cas de réseaux informatiques, sociaux, biologiques ou issus du langage,
par exemple la topologie de l’internet, des réseaux de collaboration, des réactions entre
protéines au sein d’une cellule, des co-occurrences de mots ou des relations de synonymie.
Bien que ces réseaux soient issus de contextes différents, ils se ressemblent au sens de
certaines propriétés statistiques [22,77,136]. Ceci a montré qu’il est pertinent de considérer
ces objets comme un ensemble cohérent. C’est pourquoi on les désigne sous le terme général
de graphes de terrain (complex networks en anglais).

L’analyse des graphes de terrain est probablement la plus ancienne des activités du do-
maine. La problématique centrale de l’analyse vise à décrire la structure du graphe. Ceci se
fait par l’introduction de notions statistiques et/ou structurelles qui résument l’information
et en soulignent les principales caractéristiques. La définition de telles notions est toutefois
loin d’être triviale, ainsi que l’évaluation de leur pertinence. De même l’interprétation des
descriptions obtenues peut s’avérer délicate.

La plupart des graphes de terrain sont de plus dynamiques, c’est-à-dire que leur struc-
ture évolue au fil du temps par l’ajout et/ou le retrait de nœuds et/ou de liens. L’étude
de la dynamique des graphes de terrain peut s’aborder par le problème de la prédiction de
nouveaux liens dans ces graphes.

Plusieurs graphes de terrain ont par ailleurs une nature bipartie : les nœuds appartienent
à deux classes distinctes, les liens étant uniquement entre nœuds de classes différentes. Dans
l’exemple du réseau auteur-film, les auteurs et les films constituent deux classes disjointes
et les acteurs sont reliés aux films dans lesquels ils ont joué.

Certaines notions utilisées dans l’analyse des graphes classiques (non bipartis) s’étendent
directement au cas biparti, comme par exemple la taille, la densité, ou la distribution des

100 Résumé en français Chapitre B

degrés. Pour d’autres, l’extension est moins directe ; c’est le cas de la densité locale capturé
par le coefficient de clustering, puisque dans un graphe biparti il ne peut y avoir le liens
entre les voisins d’un nœud. Bien qu’il existe déjà des méthodes pour analyser les graphes
de terrain bipartis [26, 34, 41, 54, 55, 113, 115, 123], il reste néanmoins beaucoup de travail
dans cette direction.

De même, plusieurs travaux ont étudié le problème de la prédiction de liens dans les
graphes classique (non-bipartis) [19, 67, 87, 103]. Toutefois, leurs méthodes ne sont pas
directement applicables à, ou appropriées pour, les graphes bipartis. Un autre problème de
recherche est étroitement lié à la prédiction de lien dans les graphes bipartis : le problème
de recommandation [112]. Les systèmes de recommandation sont utilisés pour proposer
des articles à des utilisateurs, tels que des produits à des clients. Notons cependant que
les deux problèmes sont très différents : la recommandation vise généralement à trouver
quelques produits d’intérêt pour chaque client ; la prédiction vise à trouver autant de liens
qui apparâıtront dans l’avenir que possible.

Contribution. La nature bipartie des graphes de terrain fait appel au développement
à de notions nouvelles ayant directement trait à la nature bipartie du graphe considéré,
c’est-à-dire des notion qui n’auraient pas de sens ou d’intérêt dans le cas classique mais
seraient naturelles dans le cas biparti. Dans cette perspective, nous identifions un type
particulier de liens que nous appelons liens internes, et nous les proposons comme une
notion importante pour l’analyse des réseaux bipartis. Ces liens sont très fréquents dans
la pratique, et les statistiques associées permettent de souligner les ressemblances et les
différences entre les graphes de terrain bipartis et les graphes bipartis aléatoires, ainsi que
d’étudier leurs caractéristiques.

Les liens internes ont également un rôle important concernant la dynamique. Nous
les étudions et proposons une approche basée sur ces liens pour la prédiction dans les
graphes bipartis. Notre méthode fonctionne très bien, beaucoup mieux que l’approche de
recommandation classique. En outre, notre méthode est purement structurelle : elle repose
sur l’identification d’un type spécifique de liens qui apparâıtront probablement à l’avenir,
ce qui donne un aperçu sur les propriétés de la dynamique sous-jacente.

B.2 graphes de terrain bipartis

De nombreux graphes de terrain ont une nature bipartie : leurs nœuds sont séparés en
deux classes et les liens existent seulement entre des nœuds de classes différentes.

On peut citer comme exemples : la signature de publications où les auteurs sont reliés
aux documents qu’ils ont signé, les systèmes pair-à-pair où les pairs sont reliés aux fichiers
qu’ils ont fournis et/ou recherchés, et les réseaux d’achats en ligne, où les clients sont reliés
aux produits qu’ils ont achetés.

B.2 graphes de terrain bipartis 101

A

B

E

D

C F

A B C D E F

2 3 41

3
4

1

2

Figure B.1 – Un exemple de graphe biparti (au centre), avec ses deux projections : ⊤-
projection B⊤(à gauche) et ⊥-projection B⊥(à droite). Ce processus réduit l’information
disponible (par exemple le fait que B et C soient reliés à deux nœuds en commun dans le
biparti, ou encore que les liens entre A, B et C dans la projection sont tous issus du même
nœud, 1, dans le biparti).

Formellement, un graphe biparti est un triplet B = (⊤,⊥, L) où ⊤ et ⊥ sont deux
ensembles disjoints de nœuds, et L ⊆ ⊤×⊥ est l’ensemble des liens. Nous notons N(u) =
{v ∈ (⊤ ∪⊥), (u, v) ∈ L} les voisins du nœud u ; n⊥ = |⊥| et n⊤ = |⊤| sont le nombre de
nœuds dans ⊤ et ⊥, respectivement, et m = |L| est le nombre de liens. Le degré moyen dans
⊥ est k⊥ = 1

n⊥

∑

u∈⊥ d(u) = m
n⊥

et le degré moyen dans ⊤ est k⊤ = 1
n⊤

∑

u∈⊤ d(u) = m
n⊤

. La
densité est δ = m

n⊥n⊤
, c’est-à-dire le nombre de liens divisé par le nombre de liens possible

entre toutes les paires de nœuds.
Bien qu’il existe aujourd’hui un nombre significatif de notions et d’outils pour analyser

les graphes classiques (non bipartis), il y a encore un manque de notions pour analyser les
graphes bipartis.

B.2.1 Projection.

Devant ce manque de notions adaptées au cas biparti, une approche classique consiste à
transformer un graphe biparti en sa projection, qui est un graphe non-biparti. Considérons
le graphe biparti B = (⊤,⊥, L) : la ⊥-projection de B est le graphe B⊥ = (⊥, L⊥) dans
lequel (u, v) ∈ L⊥ si u et v ont au moins un voisin en commun dans B : N(u) ∩N(v) 6= ∅.
La ⊤-projection B⊤ est définie inversement.

Pour les exemples présentés ci-dessus, les projections sont par exemple : réseaux de
co-vedette où deux acteurs sont reliés s’ils ont joué ensemble dans un film, réseaux de
collaboration où deux auteurs sont reliés s’ils ont signé un document ensemble, réseaux
d’intérêts où deux pairs sont reliés entre eux s’ils ont fourni/cherché une même donnée.

Cette approche permet d’étudier les graphes bipartis en utilisant les outils et les no-
tions conçus pour les graphes classiques non-bipartis. Cependant elle entrâıne une perte
importante de données [78]. Il y a en effet beaucoup d’informations dans la structure bi-
partie qui disparaissent après projection. Par exemple, si deux acteurs ont joué dans de
nombreux films ensemble, le nombre de ces films apporte beaucoup d’information. Celui-ci
est disponible dans le graphe biparti, mais pas dans la projection où les deux acteurs sont
simplement reliés entre eux.

102 Résumé en français Chapitre B

De plus, chaque ⊤-nœud de degré d dans le biparti induit d(d−1)
2

liens dans la ⊥-
projection, et inversement. Ceci provoque une augmentation très forte du nombre de liens
quand on passe d’un graphe biparti à sa projection.

B.2.2 Projection valueé

Une approche pour pallier à ce problème consiste à considérer une projection valuée,
c’est-à-dire dans laquelle des poids sont attribués aux liens. Plusieurs approches peuvent
être utilisées pour le calcul du poids de chaque lien.

Le poids du lien (u, v) peut-être défini comme étant le nombre de voisins que u et v ont
en commun dans le graphe biparti : σ(u, v) = |N(u) ∩N(v)|.

Si u et v ont beaucoup de voisins, alors σ(u, v) aura naturellement tendance à être élevé.
Inversement, si u et v ont seulement peu de voisins mais que ces voisins sont les mêmes,
alors σ(u, v) sera faible, ce qui ne reflète pas le fait que u et v sont très similaires. Pour

capturer ceci, on peut utiliser le coefficient de Jaccard : γ(u, v) = |N(u)∩N(v)|
|N(u)∪N(v)|

.

Remarquons que les nœuds jouent un rôle déséquilibré : un ⊤-nœud avec n voisins dans
le graphe biparti a une influence sur les poids de n∗(n−1)/2 liens. Lorsqu’un nœud n’a que
deux voisins, alors cela indique probablement une forte similarité entre eux. Au contraire,
si son nombre de voisins est grand alors son importance sur leurs similarité est faible. Pour
capturer ceci on peut considérer que chaque nœud vote sur la similarité de ses voisins, ce
qui conduit à calculer δ(u, v) =

∑

x∈N(u)∩N(v)
2

|N(x)|(|N(x)|−1)
.

Toutes les fonctions de pondération présentées ci-dessus sont naturelles et capturent des
informations pertinentes sur le graphe biparti. Chacune a ses avantages et ses inconvénients.

B.3 Jeu de données et statistiques de bases

Nous présentons dans cette section les jeux de données que nous utilisons et leurs
caractéristiques générales. Dans tous nos graphes de terrain bipartis, les utilisateurs sont
des nœuds ⊥ et leurs intétêts sont des nœuds ⊤. Nous avons utilisé les graphes de terrain
bipartis suivant :

– Imdb-movies [22] où les acteurs sont reliés aux films dans lesquels ils ont joué.
– Delicious-tags [61] où les utilisateurs de Delicious sont reliés aux tags qu’ils utilisent
pour indexer leurs favoris.

– Flickr-tags [109] où les utilisateurs de Flickr sont reliés aux tags qu’ils utilisent pour
indexer leurs photos.

– Flickr-comments [109] où les utilisateurs de Flickr sont reliés aux photos qu’ils com-
mentent.

– Flickr-favorites [109] où les utilisateurs de Flickr sont reliés aux photos qu’ ils mar-
quent comme favorites.

B.4 Liens et paires internes 103

– Flickr-groups [109] où les utilisateurs de Flickr sont reliés aux groupes auxquels ils
appartiennent.

– P2P-files [8] où les pairs sont liés aux fichiers qu’ils fournissent.

n⊥ n⊤ m k⊥ k⊤ δ
Flickr-comments 122, 561 1, 489, 485 4, 190, 415 34.1 2.8 0.000023
Flickr-favorites 321, 312 6, 450, 934 17, 871, 828 55.6 2.7 0.0000086
P2P-files 122, 599 1, 920, 353 4, 502, 704 36.7 2.3 0.00002
PRL-papers 15, 414 41, 633 249, 474 16.2 6.0 0.0003

Table B.1 – Statistiques de base de nos huit exemples de graphes bipartis de terrains.

Les propriétés de base de nos huit exemples de graphes de terrain bipartis sont données
dans le tableau B.1. Il apparâıt clairement que ce sont tous des grands graphes avec un
degré moyen petit par rapport à leur taille. Cependant, il ya une différence d’ordre de
grandeur entre les densités. Par exemple Flickr-groups est dix fois plus dense que P2P-
files. Nos graphes de terrain bipartis couvrent une variété de cas rencontrés en pratique.
C’est un point important qui sera utile dans la section suivante, car ils sont représentatifs
de beaucoup de comportements différents.

B.4 Liens et paires internes

Dans cette section, nous introduisons les notions de liens et paires internes. Nous util-
isons ces notions pour décrire les graphes de terrain bipartis présentés dans la section
précédente.

Considérons un graphe biparti B = (⊥,⊤, L). Pour chaque paire de nœud (u, v) /∈ L,
nous notons par B + (u, v) le graphe B′ = (⊥,⊤, L ∪ {(u, v)}) obtenu par l’ajout du
nouveau lien (u, v) à B. Pour chaque lien (u, v) ∈ L, nous notons par B − (u, v) le graphe
B′ = (⊥,⊤, L \ {(u, v)}) obtenu par la suppression du lien (u, v) de B.

Définition 1 (paire interne) Une paire de nœuds (u, v) ∈ ⊥×⊤ avec (u, v) /∈ L est une
paire ⊥-interne de B si la ⊥-projection de B′ = B + (u, v) est identique à la projection de
B. Nous définissons les paires ⊤-interne de façon similaires.

Définition 2 (lien interne) Le lien (u, v) ∈ L est un lien ⊥-interne de B si la ⊥-
projection de B′ = B − (u, v) est identique à la projection de B. Nous définissons les
liens ⊤-internes de façon similaires.

En d’autres termes, (u, v) est une paire ⊥-interne de B si l’ajout du nouveau lien (u, v)
à B ne change pas sa ⊥-projection ; (u, v) est un lien ⊥-interne si la suppression du lien
(u, v) de B ne change pas sa ⊥-projection. Voir les exemples des figures B.2 et B.3.

104 Résumé en français Chapitre B

i j k l

A B C D E

i j k l

A B C D E

A

B

D E

C

B B′ = B + (B, l) B′
⊥ = B⊥

Figure B.2 – Exemple d’une paire ⊥-interne. De gauche à droite : un graphe biparti
B, le graphe biparti B′ obtenu en ajoutant le lien (B,L) à B et la ⊥-projection de ces
deux graphes. Comme B′

⊥ = B⊥, (B, l) est une paire ⊥-interne de B.

A B C D E

i j k

A B C D E

i j k

A

B

D E

C

B B′ = B − (B, j) B′
⊥ = B⊥

Figure B.3 – Exemple d’un lien ⊥-interne. De gauche à droite : un graphe biparti
B, le graphe biparti B′ obtenu en supprimant le lien (B, j) de B et la ⊥-projection de ces
deux graphes. Comme B′

⊥ = B⊥, (B, j) est lien ⊥-interne de B.

Nous donnons une caractérisation des liens internes qui n’est pas fondée explicitement
sur la projection et fournit un autre point de vue sur cette notion.

Lemme 1 Un lien (u, v) de B est ⊥-interne si et seulement si N(v)\{u} ⊆ N(N(u)\{v}).

B.4.1 Quantité de liens et de paires internes

Afin de capturer la redondance dans la structure bipartie, nous calculons le nombre de
paires et de liens ⊤- et ⊥-internes. La fraction de liens internes, notée fEI

et présentée
dans la Table B.2, semble en général non négligeable. Une analyse quantitative de ces
valeurs nécessite cependant la définition d’un référentiel. C’est pourquoi nous comparons
les résultats des bipartis réels avec ceux obtenus avec des graphes bipartis aléatoires ayant
les mêmes tailles et distributions des degrés, qui est un modèle aléatoire typique pour
évaluer l’écart par rapport à un comportement attendu – voir par exemple [100, 101]. Les
mesures liées à ce modèle seront désignées par le symbole *.

Nous notons PI(⊥) (resp. PI(⊤)) l’ensemble des paires ⊥-internes (resp. paires ⊤-
internes) et EI(⊥) (resp. EI(⊤)) l’ensemble des liens ⊥-internes (resp. liens ⊤-internes).
Nous normalisons le nombre de paires et de liens internes mesurés sur les graphes réels
par les valeurs obtenues avec le modèle décrit ci-dessus. Les résultats correspondants sont
également présentés dans la Table B.2.

B.4 Liens et paires internes 105

fEI
(⊥) PI(⊥)

P∗
I
(⊥)

EI(⊥)
E∗

I
(⊥)

fEI
(⊤) PI(⊤)

P∗
I
(⊤)

EI(⊤)
E∗

I
(⊤)

Imdb-movies 0.031 0.441 47.0 0.026 0.491 147
Delicious-tags 0.112 0.972 1.47 0.104 1.823 5.31
Flickr-tags 0.117 0.920 1.51 0.048 1.040 2.50
Flickr-comments 0.398 0.258 4.22 0.002 0.151 22.0
Flickr-groups 0.228 0.491 2.21 0.015 0.249 2.86
Flickr-favorites 0.172 0.574 2.02 0.002 0.704 12.4
P2P-files 0.337 0.082 8.53 0.136 0.092 1430
PRL-papers 0.718 0.033 7.17 0.487 0.001 11.2

Table B.2 – Fraction de liens internes (fEI
), nombre de paires internes (PI) et de liens

internes (EI) des graphes réel normalisés par les valeurs obtenues pour des graphes bipartis
aléatoires ayant la même taille et les mêmes distributions des degrés.

On observe que les comportements concernant la quantité de liens internes sont très
hétérogènes. Cependant quelques tendances générales peuvent être soulignées : dans le
cas aléatoire, les liens ⊥- et ⊤-internes sont sous-estimés. Ainsi, la probabilité d’avoir des
nœuds qui partagent le même voisinage est plus élevée dans les graphes réels que dans
les graphes aléatoires. On peut en effet s’attendre, par exemple, à ce que les personnes
participant au même papier aient une probabilité plus élevée d’être co-auteurs d’un autre
papier qu’une paire d’auteurs aléatoires.

Cependant le nombre de paires internes est généralement surestimé dans les graphes
aléatoires. Pour comprendre cet effet, prenons le cas extrême où deux ⊥-nœuds dans un
graphe ont soit exactement le même voisinage, soit pas de voisins communs. Alors tous les
liens sont ⊥-internes, et le graphe ne contient aucune paire interne. Cet exemple indique
que le nombre de paires internes est probablement anti-corrélé au nombre de liens internes.

En général, il existe une corrélation entre le fait que le nombre de liens internes est sous-
estimé dans les graphes aléatoires et le fait que le nombre de paires interne est surestimé,
mais cette corrélation n’est pas valable dans tous les cas. En outre, il n’y a pas de lien
direct entre ces observations et la taille ou le degré moyen des graphes considérés.

Enfin, nous observons un comportement spécifique pour les deux graphes qui correspon-
dent aux jeux de données tags, c’est-à-dire Delicious-tags et Flickr-tags. Pour ces graphes on
observe le plus faible écart entre les cas réel et aléatoire pour les liens et paires ⊥-internes.
Inversement, ce sont les seuls graphes pour lesquels la quantité de paires ⊤-internes est
sous-estimée dans les graphes aléatoires.

106 Résumé en français Chapitre B

B.4.2 Corrélation entre le nombre de liens internes et le degré
des nœuds

Nous appelons le nombre de liens internes d’un nœud son degré interne, le nombre
total de liens étant son degré. Nous étudions dans cette section le rapport entre ces deux
quantités, et présentons dans la Figure B.4 le degré moyen d’un nœud en fonction de son
degré (⊥-)interne pour les données réelles et les graphes aléatoires.

Pour des raisons de brièveté, nous limitons notre analyse aux liens ⊥-internes.

Imdb-movies Delicious-tags Flickr-tags Flickr-comments

100

101

102

103

100 101 102

random
real

slope=0.48
100

101

102

103

104

105

106

100 101 102 103 104 105

random
real

slope=0.75
slope=0.74

100

101

102

103

104

105

100 101 102 103 104

random
real

slope=0.70
slope=0.73

100

101

102

103

104

105

100 101 102 103 104 105

random
real

slope=0.86
slope=0.66

Flickr-groups Flickr-favorites P2P-files PRL-papers

100

101

102

103

104

105

100 101 102 103 104 105

random
real

slope=0.69
slope=0.64

100

101

102

103

104

105

100 101 102 103 104 105

random
real

slope=0.75
slope=0.67

100

101

102

103

104

105

100 101 102 103 104

random
real

slope=0.63
100

101

102

103

104

100 101 102 103

random
real

slope=0.93
slope=0.78

Figure B.4 – Degré moyen en fonction du degré ⊥-interne.

Nous observons que les deux courbes réelles et aléatoires peuvent être approximées
par une loi sous-linéaire dans plusieurs cas. Cependant, ce modèle est insatisfaisant pour
P2P-files, et discutable pour les cas où les valeurs sont trop rares ou trop dispersées : en
particulier Imdb-movies et Flickr-groups. La dispersion observée pour les grands degrés est
une conséquence de la distribution des degrés qui est hétérogène (nous ne la présentons
pas ici), le nombre de nœuds avec un degré élevé étant faible.

Si le fait qu’un lien donné est interne ou non était indépendant du degré du nœud, ces
courbes seraient linéaires. Comme les graphes aléatoires ont un comportement sous-linéaire,
cela signifie que les nœuds ayant des degrés importants ont, en moyenne, une proportion
plus élevée de liens internes. Cet effet peut être expliqué qualitativement : l’augmentation
du degré d’un nœud u implique une augmentation de la probabilité que l’un de ses voisins
v soit tel que N(v) \ {u} ⊆ N(N(u) \ {v}).

D’autre part, la pente pour les graphes réel est dans la plupart des cas plus grande que
la pente pour les graphes aléatoires – à nouveau les jeux de données de tags présentent un

B.5 Prédiction de liens dans les graphes bipartis 107

comportement différent.
Donc, le cas réel fournit plus de liens internes et moins de nœuds ayant une fraction

faible (mais non nulle) de ces liens, qui doivent être des nœuds de fort degré. Cela provient
du fait que si les nœuds u et v sont des voisins, la probabilité que N(v)\{u} ⊆ N(N(u)\{v})
est d’autant plus importante que le degré de v est faible et de u est grand.

B.5 Prédiction de liens dans les graphes bipartis

La prédiction de liens est une problématique clé dans l’étude des graphes de train
dynamiques. Certaines travaux ont étudié ce problème dans les graphes classiques (non-
bipartis), et ne sont pas directement applicables ou appropriés pour les graphes bipartis [19,
29, 45, 67, 69, 87, 103, 129, 134]. Par exemple, les méthodes basées sur le voisinage commun
de deux nœuds s’appuient sur la présence de triangles dans le graphe. Cependant, il n’y a
pas de triangles dans les graphes bipartis. Les méthodes basées sur les chemins entre les
nœuds ou les marche aléatoire doivent être adaptées pour ne prendre en compte que les
chemins de longueur impaire, car un lien ne peut apparâıtre entre deux nœuds que s’ils
sont déjà reliés par des chemins de longueurs impaires dans le graphe biparti.

Comme expliqué dans la section B.1, la prédiction de lien et la recommandation sont
deux problème étroitement liés. Diverses approches ont été développées pour la recomman-
dation [20,25,74], et le filtrage collaboratif est l’approche la plus couramment utilisée [74].
Nous allons utiliser cette approche dans cette section pour des fins de comparaison avec
notre méthode.

B.5.1 La prédiction de liens dans les graphes bipartis

Considérons un graphe biparti dynamique défini par un ensemble de n liens horodatés
D = {(ti, ui, vi), i = 1...n}. Soit B = (⊥,⊤, L) le graphe observé à partir d’un instant donné
a à un autre instant b > a : ⊥ = {u, ∃(t, u, v) ∈ D s.t. a 6 t < b}, ⊤ = {v, ∃(t, u, v) ∈
D s.t. a 6 t < b} et L = {(u, v), ∃(t, u, v) ∈ D s.t. a 6 t < b}. Nous appelons B le graphe
de référence et [a, b[la période de référence.

Maintenant, considérons un instant c > b. Ceci induit un ensemble de liens L′ ajoutés à
B durant la période [b, c[, que nous appelons la période de prédiction : L′ = {(u, v), ∃(t, u, v) ∈
D s.t. b 6 t < c} ∩ (⊥ × ⊤ \ L). Notez que nous considérons seulement les liens entre les
nœuds de G (nous ignorons les nouveaux nœuds apparaissant dans la période [b, c[) qui ne
sont pas présents dans B (nous considérons seulement les liens dans ⊥×⊤ \ L).

L’objectif d’une méthode de prédiction de liens est de trouver un ensemble P de liens
prédits qui contient de nombreux liens de L′, mais seulement peu qui ne sont pas dans L′.

Remarquons que dans le cas extrême où l’on prédit tous les liens possibles, c’est-à-dire
P = ⊥×⊤ \ L, alors on arrive à prédire tous les liens de L′, mais on prédit également de
nombreux liens qui ne sont pas dans L′, et inversement.

108 Résumé en français Chapitre B

L’évaluation des performances d’une méthode de prédiction consiste donc à évaluer sa
capacité à atteindre un compromis entre ces deux objectifs, ce qui n’est pas trivial. Nous
présentons ci-dessous une méthode classique pour le faire [43,118], que nous utilisons dans
cette section.

Notons P l’ensemble de liens dont la méthode prédit qu’ils n’apparâıtront pas P =
(⊥×⊤\L) \P . La figure B.5 illustre les quatre cas possibles qui peuvent se produire lors
de la prédiction de liens : l’ensemble P ∩ L′ des vrais positifs est l’ensemble des liens qui
apparaissent et que la méthode prédit avec succès ; l’ensemble P \ L′ des vrais négatifs est
l’ensemble de liens non prédit qui n’appairassent pas. À l’inverse, les faux positifs sont les
liens de P \ L′, c’est-à-dire les liens prédit, mais n’appairassant pas, et les faux négatifs
sont les liens de P ∩ L′.

false positives

P
E

true negatives
\P

\T

T

X L

L

P \ Lfalse negatives
P U

P
true positives

UL
L

Figure B.5 – Une méthode de prédiction divise l’ensemble des liens possibles ⊥ × ⊤ \ L
en quatre catégories : les vrais positifs, P ∩ L′ ; les vrais négatifs, P \ L′ ; les faux positifs,
P \ L′ ; et les faux négarifs, P ∩ L′.

Le but d’une méthode de prédiction de lien est de maximiser le nombre de vrais positifs
et négatifs, tout en minimisant le nombre de faux positifs et négatifs. Ceci est capturé par
deux quantités, appelé précision et rappel.

La précision est la fraction de vrais positifs parmi les liens prédit, c’est-à-dire |P∩L′|
|P |

.
En d’autres termes, c’est la probabilité que la méthode est bonne quand elle prédit qu’un
lien donné apparâıtra, et est donc une mesure de la correction.

Le rappel est la fraction de vrais positifs parmi les liens qui apparaissent, c’est-à-dire
|P∩L′|
|L′|

. En d’autres termes, c’est la probabilité qu’un lien qui apparait sera en effet prédit
par la méthode, et est donc une mesure de l’exhaustivité.

Comme expliqué plus haut, il existe un compromis entre la précision et le rappel, comme,
en général, l’amélioration de l’une dégrade l’autre et inversement. Afin de saisir cela en une
seule valeur, qui est souvent plus pratique, on considère généralement la F-mesure, 2×|P∩L′|

|P |+|L′|
,

qui est la moyenne harmonique de la précision et le rappel [130]. L’objectif d’une méthode
de prédiction est alors de maximiser la F-mesure.

B.5 Prédiction de liens dans les graphes bipartis 109

B.5.2 La prédiction de liens internes

La principale caractéristique de notre méthode de prédiction est qu’elle se concentre
sur les paires internes : elle ne prédit que des liens qui sont des paires internes dans le
graphe de référence. L’intuition derrière cela est que deux nœuds de ⊥ qui ont déjà un
voisin commun dans B (c’est-à-dire qui sont liés dans B⊥) vont probablement en acquérir
plus à l’avenir. Par contre, si deux nœuds n’ont pas de voisin commun dans B, alors ils
vont probablement encore ne pas en avoir à l’avenir. Les liens qui peuvent être ajoutés à
B qui correspondent à ces deux critères sont précisément les paires internes.

Pour aller plus loin, deux nœuds de ⊥ ayant de nombreux voisins communs dans B
sont plus susceptibles d’avoir plus de nouveaux voisins à l’avenir que des nœuds qui ont
un seul voisin en commun. Plus généralement, toutes les fonctions de poids présentés dans
la Section B.2.2 sont des mesures (de différents points de vue) de notre attente à ce que
deux nœuds ayant au moins un voisin en commun en auront probablement plus à l’avenir.
Par conséquent, nous nous attendons à ce que les liens qui apparaissent soient les paires
internes induisant les ⊥-liens ayant un poids élevé.

Cela conduit à la méthode de prédiction suivante, que nous appelons la prédiction de
liens internes. Prenons une fonction poids ω comme celles décrites dans la Section B.2.2,
et un seuil de poids τ donné. On note L⊥τ = {(u, w) ∈ L⊥, ω(u, w) ≥ τ} l’ensemble des
liens dans la projection qui ont un poids supérieur ou égal à τ. Nous alors prédire toutes
les paires internes qui induisent au moins un lien de L⊥τ.

A B C D E

lkji

A B C D E

lkji

A

C

D
E

B

A

C

D
E

B

B paires internes
les liens induits par
les paires internes

les liens induits par
(B, l)

A

C

D
E

B

1/3

1/3

1/2
2/3

1/4

1/4

1/3

1/4

A

C

D
E

B

A

C

D
E

B

A

C

D
E

B

B⊥, γ seuil τ = 1
4

seuil τ = 1
3

seuil τ = 2
3

Figure B.6 – Exemple de prédiction de liens internes. Première ligne (de gauche à
droite) : un graphe biparti B, les paires internes de B, les ⊥-liens qu’elles induisent, et les
liens de B⊥ induits par la paire (B, l). Deuxième ligne (de gauche à droite) : ⊥-projection
de B valuée par Jaccard (B⊥, γ), et les liens L⊥ 1

4
, L⊥ 1

3
, L⊥ 2

3
obtenus en utilisant les seuils

τ égaux respectivement à 1
4
, à 1

3
et à 2

3
.

La Figure B.6 présente un exemple de prédiction de liens internes en utilisant la fonction
de poids Jaccard. L’ensemble des liens internes de B est {(B, l), (C, k), (D, k), (E, j)} ;

110 Résumé en français Chapitre B

concentrons-nous sur la paire interne (B, l). Elle induit les liens (B,C), (B,D), et (B,E).
Étant donné un seuil τ nous prévoyons (B, l) si un de ces liens a un poids d’au moins τ.
Par exemple :

– si τ = 1
4
, tous les liens dans la projection ont un poids supérieur ou égal à τ, et ainsi

nous prédisons toutes les paires internes possibles dans le graphe biparti, y compris
(B, l) ;

– si τ = 1
3
, seulement 5 liens dans la projection ont un poids supérieur ou égal à τ ,

incluant (B,C), qui est induit par (B, l) ; donc nous prédisons (B,L) ;
– si τ = 2

3
, un seul lien a le poids supérieur ou égal à τ, et qui n’est pas un lien induit

par (B,L) ; donc nous ne prédisons pas (B,L).

B.5.3 Résultats expérimentaux

Les performances des méthodes de prédiction de lien dépendent de différents paramètres,
en particulier la durée des périodes de référence et de prédiction, et la fonction de poids.
Dans cette section nous nous concentrons sur l’impact des fonctions de poids. Nous nous
focalisons sur le jeu de données P2P-files qui est représentatif de tous les résultats obtenus
pour d’autres jeux de données.

Nous utilisons la période de référence [0, 1 jour[et la période de prédiction [1, 16 jours[,
qui sont représentatives d’une large plage de valeurs de ces paramètres. Nous calculons
ensuite la précision et le rappel pour toutes les valeurs possibles du seuil τ pour notre
méthode et toutes les valeurs possibles de N (le nombre de liens recommandés pour chaque
nœud) pour le filtrage collaboratif ; nous traçons la précision obtenue en fonction du rappel
obtenu dans la Figure B.7.

Une première observation importante est que les fonctions de poids peuvent être divisées
en deux classes concernant les performances de notre méthode (Figure B.7, à gauche) :
sum, Jaccard et cosine atteignent des valeurs très élevées de précision, et sont également
en mesure de parvenir à de très bons compromis entre précision et rappel (une précision
de 50% et un rappel de 20%) ; par contre, delta, overlap et attachment donnent de mau-
vaises performances. Un tel comportement n’est pas observé pour le filtrage collaboratif
(Figure B.7, à droite) : toutes les fonctions de poids donnent des résultats très similaires à
l’exception de l’attachment qui obtient des résultats pires que les autres.

B.6 Conclusion

Nous avons abordé dans cette thèse le problème de l’analyse et de la prédiction de lien
dans les graphes de terrain bipartis. Pour ce faire, nous avons introduit un type partic-
ulier de liens que nous avons appelé liens internes. Ces liens ont la particularité que leur
suppression ne change pas la projection du graphe biparti.

B.6 Conclusion 111

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

sum
jaccard

delta
attachment

cosine
overlap

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

sum
jaccard

delta
attachment

cosine
overlap

Figure B.7 – Précision (axe vertical) en fonction du rappel (axe horizontal), pour une
période de référence de 1 jour [0, 1 jour[et une période de prédiction de 15 jours [1, 16 jours[,
pour toutes les fonctions de poids. Gauche : prédiction de liens internes ; droite : filtrage
collaboratif. Chaque point correspond à la précision et au rappel obtenu pour une valeur
donnée de τ ou N .

Les liens internes peuvent être utilisés pour mesurer la redondance dans les graphes
bipartis, et pour mesurer la perte d’information entre un graphe biparti et ses projections.
En utilisant un vaste ensemble d’exemples du monde réel, nous avons montré que les
liens internes sont très fréquents en pratique, et que les statistiques associées permettent
de souligner des ressemblances et des différences entre les graphes de terrain bipartis.
En outre, notre notion est spécifiquement conçue pour les graphes bipartis. De plus, la
suppression des liens internes peut être utilisée pour obtenir des codages bipartis compacts
et améliorer la modélisation des graphes de terrain bipartis. Cela en fait un outil pertinent
pour l’analyse des graphes bipartis, qui est un sujet de recherche important.

Nous avons aussi proposé une méthode basée sur les liens internes pour aborder le
problème la prédiction de liens dans les graphes de terrain bipartis dynamiques. Nous
avons évalué la pertinence de cette méthode en la comparant au filtrage collaboration avec
des expériences réalisées sur différents jeux de données, et avons montré que notre méthode
fonctionne très bien. En outre, notre méthode est purement structurelle : elle repose sur
l’identification d’un type spécifique de liens qui apparâıtront probablement à l’avenir, ce
qui donne une intuition sur les propriétés de la dynamique sous-jacente.

Les travaux menés dans cette thèse ouvrent plusieurs perspectives.

Nous pouvons tout d’abord compléter notre classification par l’étude des liens et paires
externes (les liens et paires qui ne sont pas internes) et définir d’autres classes spécifiques
de liens.

Les liens internes peuvent également être considérés comme des informations inutiles
pour la projection ; leur suppression donne un graphe biparti minimal capable de stocker les

112 Résumé en français Chapitre B

informations contenues dans le graphe projeté. Cependant, la suppression d’un lien interne
peut changer la nature d’autre liens dans le biparti. Le défi consiste ici à concevoir des
stratégies d’élimination qui donnent un graphe biparti sans liens internes ayant toujours la
même projection.

Notons que tout graphe G = (V,E) peut être vu comme un graphe biparti B =
(⊥,⊤, E) tel que ⊤ et ⊥ sont les nœuds du graphe classique, et chaque nœud dans ⊤
est lié à ses voisins dans G. Avec cela, on peut utiliser notre méthode de prédiction de lien
pour les graphes classiques, la rendant ainsi plus générale.

Finalement, une perspective essentielle est de concevoir des modèles pour graphes bi-
partis. Une façon intéressante pour ce faire consiste à générer des graphes bipartis avec
des distributions des degrés et des degrés internes données. Le défi serait de connecter les
nœuds de telle sorte que le graphe final contienne le nombre souhaité de liens internes. Ceci
est difficile parce que la création d’un nouveau lien peut faire que des liens précédemment
internes deviennent externes, et vice-versa.

B.7 Annexe–Mesure de l’activité pair-à-pair.

Il existe plusieurs façons de collecter des traces d’usages pair-à-pair, chacune ayant
ses avantages et ses inconvénients en fonction du type d’informations recherché et/ou
du système concerné. On peut par exemple concevoir un client pair-à-pair effectuant des
requêtes afin de savoir quelles données sont proposées par les autres pairs [66, 83, 119].
Il est également possible de capturer le trafic directement sur les routeurs et chez les
fai [72,116,122]. On peut également installer un pair de grande capacité traitant de nom-
breuse requêtes, et qui peut les enregistrer [3].

Nous avons conçu un client de type honeypot pour effectuer des mesures dans le système
eDonkey. Dans ce système, des serveurs indexent les fichiers proposés par les pairs. Lorsqu’un
pair recherche un fichier, il fait une requête auprès du serveur qui lui fournit une liste de
fournisseurs. Le pair contacte alors directement les fournisseurs pour télécharger le fichier.
Notre client contacte le serveur et prétend fournir certains fichiers, puis enregistre les
requêtes faites par d’autres pairs pour ces fichiers.

Nous illustrons notre approche en menant une mesure distribuée avec 24 honeypots
implantés sur différentes machines de PlanetLab pendant un mois (octobre 2008). Tous les
honeypots ont annoncé les quatre mêmes fichiers (un film, une chanson, une distribution
Linux et un texte).

Impact de la durée de mesure. Nous observons d’abord la façon dont le nombre
de pairs distincts observés évolue lorsque la durée de mesure crôıt. La figure B.8 montre
clairement que le nombre de pairs observés crôıt rapidement, et quasiment linéairement,
pendant toute la mesure. Même après 30 jours, le nombre de pairs distincts observés aug-
mente encore de façon significative : plus de 2 500 nouveaux pairs par jour.

B.7 Annexe–Mesure de l’activité pair-à-pair. 113

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 5 10 15 20 25 30 35
 0

 1000

 2000

 3000

 4000

 5000

 6000

N
om

br
e

to
ta

l d
e

pa
irs

N
om

br
e

de
 n

ou
ve

au
x

pa
irs

Jours

nombre total de pairs

nouveaux pairs

Figure B.8 – Évolution du nombre de pairs
distincts observés depuis le début de notre
mesure (axe vertical de gauche) et du nombre
de nouveaux pairs observés chaque jour (axe
vertical de droite) en fonction du temps écoulé
depuis le début de cette mesure, en jours (axe
horizontal).

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 0 5 10 15 20 25

N
om

br
e

de
 p

ai
rs

Nombre de honeypots

moyenne sur 100 permutations alatoires

Figure B.9 – Nombre de pairs distincts
observés à la fin de la mesure (axe verti-
cal) en fonction du nombre n de honeypots

impliqués (axe horizontal). Pour chaque n,
on échantillonne 100 ensembles aléatoires de
n honeypots et on trace la valeur moyenne
obtenue.

Le nombre de nouveaux pairs découverts chaque jour diminue au cours du temps, ce
qui est probablement dû au fait que la popularité des fichiers partagés a diminué. Ceci
peut également être dû au fait que nous parvenons à une situation où la plupart des pairs
qui s’intéressent aux fichiers proposés ont déjà contacté un de nos honeypots. Le point
important est que cela se produit seulement après une longue durée de mesure (un mois).
Ceci signifie que la poursuite de la mesure pendant de longues périodes de temps a un sens,
même avec 24 honeypots distribués partageant 4 fichiers seulement.

Impact du nombre de honeypots utilisés. Nous étudions maintenant l’avantage d’u-
tiliser plusieurs honeypots, en termes de nombre de pairs observés. Pour cela, nous étudions
ce que nous aurions obtenu si une partie seulement de nos honeypots avaient été utilisés.
Pour ce faire, nous sélectionnons n honeypots parmi les 24, et nous calculons le nombre de
pairs distincts observés par ces n honeypots. Comme le choix des n honeypots peut avoir
une influence significative sur le résultat, nous répétons ce calcul avec 100 échantillons
aléatoires, et nous traçons les valeurs moyennes obtenues dans la Figure B.9.

Cette figure montre clairement que, même lorsque 24 honeypots sont utilisés, il y a
un avantage significatif à en ajouter encore. Toutefois, le bénéfice obtenu en utilisant plus
de honeypots diminue progressivement, et on peut imaginer qu’au bout d’un moment en
ajouter n’apporte qu’un bénéfice négligeable.

114 Résumé en français Chapitre B

References

[1] aMule: http://www.amule.org/.

[2] planet-lab: http://www.planet-lab.org/.

[3] William Acosta and Surendar Chandra. Trace driven analysis of the long term evo-
lution of gnutella peer-to-peer traffic. In PAM, pages 42–51, 2007.

[4] Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. Social Networks,
25:211–230, 2003.

[5] E. Adar. User 4xxxxx9: Anonymizing query logs. InWorkshop on Query Log Analysis
at the 16th World Wide Web Conference, 2007.

[6] Eytan Adar and Bernardo A. Huberman. Free riding on gnutella. First Monday, 5,
2000.

[7] Ian Foster Adriana Iamnitchi, Matei Ripeanu. Small-world file-sharing communities.
Twenty-third AnnualJoint Conference of the IEEE Computer and Communications
Societies In INFOCOM, 2, 2004.

[8] F. Aidouni, M. Latapy, and C. Magnien. Ten weeks in the life of an eDonkey server.
In Proceedings of the Sixth International Workshop on Hot Topics in Peer-to-Peer
Systems, 2009.

[9] R Albert, H Jeong, and A-L Barabási. Error and attack tolerance of complex net-
works. Nature, 406:378–82, 2000.

[10] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.
Reviews of Modern Physics, 74(1):47–97, Jan 2002.

[11] Oussama Allali, Matthieu Latapy, and Clémence Magnien. Measurement of eDonkey
activity with distributed honeypots. In Proceedings of Sixth International Workshop
on Hot Topics in Peer-to-Peer Systems (Hot-P2P’09), 2009. In conjunction with
IEEE IPDPS’09.

[12] Oussama Allali, Clémence Magnien, and Matthieu Latapy. Internal link prediction:
a new approach for predicting links in bipartite graphs. Submitted.

116 References

[13] Oussama Allali, Clémence Magnien, and Matthieu Latapy. Link prediction in bipar-
tite graphs using internal links and weighted projection. In Proceedings of the third
International Workshop on Network Science for Communication Networks (Netsci-
com’11), 2011. In Conjunction with IEEE Infocom’11.

[14] Oussama Allali, Lionel Tabourier, Clémence Magnien, and Matthieu Latapy. In-
ternal links and pairs as a new tool for the analysis of bipartite complex networks.
Submitted.

[15] Mark Alllman and Vern Paxson. Issues and etiquette concerning use of shared mea-
surement data. In IMC ’07: Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, pages 135–140, New York, NY, USA, 2007. ACM.

[16] Juan A. Almendral and Albert Dı́az-Guilera. Dynamical and spectral properties of
complex networks. New Journal of Physics, 9, 2007.

[17] M.M. Babu, N.M. Luscombe, L. Aravind, M. Gerstein, and S.A. Teichmann. Struc-
ture and evolution of transcriptional regulatory networks. Curr Opin Struct Biol,
14(3):283–291, 2004.

[18] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large
social networks : Membership, growth, and evolution. In Proc. 12th ACM SIGKDD
Intl. Conf. on Knowledge Discovery and Data Mining, 2006.

[19] Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and recom-
mending links in social networks. In Proceedings of the ACM International Conference
on Web Search and Data Mining (WSDM’11), 2011.

[20] Marko Balabanovic and Yoav Shoham. Fab: Content-based, collaborative recom-
mendation. Communications of the ACM, 40:66–72, 1997.

[21] A. L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek. Evolution
of the social network of scientific collaborations. Physica A, 311(3-4):590 – 614, 2001.

[22] A.L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509, 1999.

[23] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. The architecture
of complex weighted networks. Proceedings of the National Academy of Sciences of
the United States of America, 101(11), March 2004.

[24] Marc Barthélem, Alain Barrat, Romualdo Pastor-Satorras, and Alessandro Vespig-
nani. Characterization and modeling of weighted networks. PHYSICA A, 346, 2005.

[25] Chumki Basu, Haym Hirsh, and William Cohen. Recommendation as classification:
Using social and content-based information in recommendation. In Proceedings of
the Fifteenth National Conference on Artificial Intelligence, 1998.

[26] Vladimir Batagelj, Patrick Doreian, and Anuska Ferligoj. Generalized blockmodeling
of two-mode network data. Social Networks, 26(1):29–53, 2004.

References 117

[27] S. Battiston and M. Catanzaro. Statistical properties of corporate board and director
networks. European Physical Journal B, 38, 2004.

[28] Nesserine Benchettara, Rushed Kanawati, and Céline Rouveirol. Supervised machine
learning applied to link prediction in bipartite social networks. In Advances in Social
Networks Analysis and Mining (ASONAM’10), 2010.

[29] Nesserine Benchettara, Rushed Kanawati, and Céline Rouveirol. A supervised ma-
chine learning link prediction approach for academic collaboration recommendation.
In Proceedings of the fourth ACM conference on Recommender systems, 2010.

[30] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Le-
febvre. Fast unfolding of communities in large networks. Journal of Statstical Me-
chanics : Theory and Experiment, page P10008, 2008.

[31] B. Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European J. Combin, 1:311–316, 1980.

[32] B. Bollobás. Random graphs. Academic Press, 1985.

[33] Stephen P. Borgatti and Martin G. Everett. Regular blockmodels of multiway, mul-
timode matrices. Social Networks, 14, 1992.

[34] Stephen P. Borgatti and Martin G. Everett. Network analysis of 2-mode data. Social
Networks, 19(3):243–269, 1997.

[35] John Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In Proceedings of the 14th Conference on Un-
certainty in Artificial Intelligence, 1998.

[36] B. Bui-Xuan, A. Ferreira, and A. Jarry. Evolving graphs and least cost journeys
in dynamic networks. In Proceedings of WiOpt’03 Modeling and Optimization in
Mobile, Ad-Hoc and Wireless Networks, pages 141–150, 2003.

[37] Guido Caldarelli, Stefano Battiston, Diego Garlaschelli, and Michele Catanzaro.
Emergence of complexity in financial networks. Lecture Notes in Physics, 650, 2004.

[38] R. Calegari, M. Musolesi, F. Raimondi, and C. Mascolo. CTG : A connectivity trace
generator for testing the performance of opportunistic mobile systems. In European
Software Engineering Conference and the International ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE07), 2007.

[39] D.S. Callaway, M.E.J. Newman, S.H. Strogatz, and D.J. Watts. Network robustness
and fragility : Percolation on random graphs. Physical Review Letters, 85:5468–5471,
2000.

[40] John Canny. Collaborative filtering with privacy via factor analysis. In Proceedings of
the 25th annual international ACM SIGIR conference on Research and development
in information retrieval, 2002.

118 References

[41] Peter J. Carrington, John Scott, and Stanley Wasserman. Models and methods in
social network analysis. Structural analysis in the social sciences. Cambridge Univ.
Press Cambridge [u.a.], 2005.

[42] A. Chaintreau, J. Crowcroft, C. Diot, R. Gass, P. Hui, and J. Scott. Pocket switched
networks and the consequences of human mobility in conference environments. In
WDTN, pages 244–251, 2005.

[43] Prabhakar Raghavan Christopher D. Manning and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[44] A. Clauset and N. Eagle. Persistence and periodicity in a dynamic proximity network.
In DIMACS Workshop, 2007.

[45] Aaron Clauset, Cristopher Moore, and M. E. J. Newman. Hierarchical structure and
the prediction of missing links in networks. Nature, 453(7191):98–101, 2008.

[46] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the internet to
random breakdown. Physical Review Letters, 85, 2000.

[47] Jean-Philippe Cointet and Camille Roth. Socio-semantic dynamics in a blog network.
In IEEE SocialCom 09 Intl Conf Social Computing, pages 114–121, 2009.

[48] U. Vazirani D. Aldous. ”go with the winners” algorithms. In proceedings of the
35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pages
492–501, 1994.

[49] Mukund Deshpande and George Karypis. Item based top-n recommendation algo-
rithms. ACM Transactions on Information Systems, 22:143–177, 2004.

[50] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks. Advances in Physics,
51:1079 – 1187, 2002.

[51] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Structure of growing
networks with preferential linking. Physical Review Letters, 85(21):4633–4636, Nov
2000.

[52] P. Erdös and A. Rényi. On random graphs i. Publicationes Mathematicae Debrecen,
6:290, 1959.

[53] Guler Ergun. Human sexual contact network as a bipartite graph. Physica A, 308,
2002.

[54] Katherine Faust. Centrality in affiliation networks. Social Networks, 19, 1997.

[55] Katherine Faust, Karin E. Willen, D. Rowlee David, and Skvoretz John. Scaling
and statistical models for affiliation networks: patterns of participation among soviet
politicians during the Brezhnev era. Social networks, 24(3):231–259, 2002.

[56] Ramon Ferrer-i-Cancho and Ricard V. Sole. The small world of human language. In
Proceedings of The Royal Society of London. Series B, Biological Sciences, November
2001.

References 119

[57] F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and L. Massoulié. Clustering in
Peer-to-Peer file sharing workloads. In In 3rd International Workshop on Peer-to-
Peer Systems (IPTPS), 2004.

[58] Santo Fortunato, Vito Latora, and Massimo Marchiori. Method to find community
structures based on information centrality. Physical Review E, 70(5), 2004.

[59] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. PNAS, 99(12):7821–7826, 2002.

[60] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A
constant time collaborative filtering algorithm. Information Retrieval, 4:133–151,
2001.

[61] O. Görlitz, S. Sizov, and S. Staab. Pints: Peer-to-peer infrastructure for tagging
systems. In Proceedings of the Seventh International Workshop on Peer-to-Peer Sys-
tems, 2008.

[62] Jean-Loup Guillaume and Matthieu Latapy. Bipartite graphs as models of complex
networks. In proceedings of the 1-st international workshop on Combinatorial and
Algorithmic Aspects of Networking CAAN’04, 2004.

[63] Jean-Loup Guillaume and Matthieu Latapy. Bipartite structure of all complex net-
works. Information Processing Letters (IPL), 90(5):215–221, 2004.

[64] Jean-Loup Guillaume, Matthieu Latapy, and Stevens Le-Blond. Statistical analysis
of a P2P query graph based on degrees and their time-evolution. In Proceedings of
the 6-th International Workshop on Distributed Computing (IWDC’04), 2004.

[65] Assia Hamzaoui, Matthieu Latapy, and Clémence Magnien. Detecting Events in the
Dynamics of Ego-centered Measurements of the Internet Topology. In WiOpt’10:
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, pages 491–
498, 2010.

[66] S. B. Handurukande, A.-M. Kermarrec, F. Le Fessant, L. Massoulié, and S. Patarin.
Peer sharing behaviour in the edonkey network, and implications for the design of
server-less file sharing systems. SIGOPS Oper. Syst. Rev., 40(4):359–371, 2006.

[67] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki. Link
prediction using supervised learning. In Proceedings of SDM 06 workshop on Link
Analysis, Counterterrorism and Security, 2006.

[68] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An al-
gorithmic framework for performing collaborative filtering. In Proceedings of the
Conference on Research and Development in Information Retrieval, 1999.

[69] Zan Huang. Link Prediction Based on Graph Topology: The Predictive Value of
Generalized Clustering Coefficient. Workshop on Link Analysis Dynamics and Static
of Large Networks (LinkKDD’06), 2006.

120 References

[70] Zan Huang, Xin Li, and Hsinchun Chen. Link prediction approach to collaborative
filtering. In Proceedings of the Joint Conference on Digital Libraries (JCDL05).
ACM, 2005.

[71] Daniel Hughes, James Walkerdine, Geoff Coulson, and Stephen Gibson. Peer-to-
peer: Is deviant behavior the norm on p2p file-sharing networks? IEEE Distributed
Systems Online, 7(2), 2006.

[72] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and Kc claffy. Transport
layer identification of p2p traffic. In IMC ’04: Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, pages 121–134, New York, NY, USA, 2004.
ACM.

[73] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and inference problems for
temporal networks. In Proc. 32nd ACM Symposium on Theory of Computing, 2000.

[74] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R.
Gordon, and John Riedl. Grouplens: applying collaborative filtering to usenet news.
Communications of the ACM, 40:77–87, 1997.

[75] Yoram Kulbak and Danny Bickson. The emule protocol specification. Technical
report, School of Computer Science and Engineering The Hebrew University of
Jerusalem, January 2005.

[76] M. Lad, D. Massey, and L. Zhang. Visualizing internet routing changes. Transactions
on Visualization and Computer Graphics, special issue on Visual Analytics, 2006.

[77] Matthieu Latapy. Grands graphes de terrain – mesure et métrologie, analyse,
modélisation, algorithmique. Mémoire d’habilitation à diriger les recherches, UPMC,
2007. http://www-rp.lip6.fr/~latapy/HDR/.

[78] Matthieu Latapy and Clémence Magnien. Complex network measurements : Esti-
mating the relevance of observed properties. In Proceedings of IEEE Infocom, 2008.

[79] Matthieu Latapy, Clémence Magnien, and Nathalie Del Vecchio. Basic notions for
the analysis of large two-mode networks. Social Networks, 30(1), 2008.

[80] Stevens Le Blond, Fabrice Fessant, and Erwan Merrer. Finding good partners in
availability-aware P2P networks. In Proceedings of the 11th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS’09), pages 472–
484, 2009.

[81] Stevens Le-Blond, Jean-Loup Guillaume, and Matthieu Latapy. Clustering in P2P
exchanges and consequences on performances. In IPTPS, pages 193–204, 2005.

[82] Stevens Le-Blond, Jean loup Guillaume, and Matthieu Latapy. Clustering in P2P
exchanges and consequences on performances. In Proceedings of the 4-th International
workshop on Peer-to-Peer Systems IPTPS’05, pages 193–204. Springer, 2005.

[83] F. Le Fessant, S. Handurukande, A. M. Kermarrec, and L. Massoulié. Clustering in
peer-to-peer file sharing workloads. In 3rd International Workshop on Peer-to-Peer
Systems (IPTPS’04), San Diego, CA, February 2004.

References 121

[84] Nathaniel Leibowitz, Matei Ripeanu, and Adam Wierzbicki. Deconstructing the
kazaa network. In WIAPP ’03: Proceedings of the The Third IEEE Workshop on
Internet Applications, page 112, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[85] E. A. Leicht, G. Clarkson, K. Shedden, and M. E. J. Newman. Large-scale structure
of time evolving citation networks. Eur. Phys J. B, 59, 2007.

[86] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution : Densifi-
cation and shrinking diameters. ACM Transactions on Knowledge Discovery from
Data (ACM TKDD), 1(1), 2007.

[87] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social net-
works. In Proceedings of the twelfth international conference on Information and
knowledge management(CIKM ’03), 2003.

[88] Pedro G. Lind, Marta C. González, and Hans J. Herrmann. Cycles and clustering in
bipartite networks. Physical Review E, 72(5), Nov 2005.

[89] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item
collaborative filtering. Internet Computing, IEEE, 7(1), 2003.

[90] S. H. Strogatz M. E. J. Newman, D. J. Watts. Random graph models of social
networks. Proceedings of the National Academy of Sciences of the United States of
America, 99(1):2566–2572, February 2002.

[91] Michael Molloy and Bruce Reed. A critical point for random graphs with a given
degree sequence. Random Structures & Algorithms, 6:161–179, 1995.

[92] Michael Molloy and Bruce Reed. The size of the giant component of a random graph
with a given degree sequence. Comb. Probab. Comput., 7:295–305, September 1998.

[93] M. E. J. Newman. Clustering and preferential attachment in growing networks.
Physical Review Letters E, 64, 2001.

[94] M. E. J. Newman. Scientific collaboration networks. i. network construction and
fundamental results. Physical Review E, 64(1), Jun 2001.

[95] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths, weighted
networks, and centrality. Phys. Rev. E, 64(1), Jun 2001.

[96] M. E. J. Newman. Assortative mixing in networks. Physical Review Letters, 89(20),
Oct 2002.

[97] M. E. J. Newman. The structure and function of complex networks. SIAM REVIEW,
45, 2003.

[98] M. E. J. Newman. Analysis of weighted networks. Physical Review E, 70(5), Nov
2004.

[99] Mark Newman, Albert-László Barabási, and Duncan J. Watts. The structure and
dynamics of networks. Princeton University Press, Princeton, USA, 2006.

122 References

[100] M.E.J. Newman and J. Park. Why social networks are different from other types of
networks. Physical Review E, 68(3):36122, 2003.

[101] M.E.J. Newman, S.H. Strogatz, and D.J. Watts. Random graphs with arbitrary
degree distributions and their applications. Physical Review E, 64(2):26118, 2001.

[102] R. Oliveira, B. Zhang, and L. Zhang. Observing the evolution of internet AS topology.
In ACM SIGCOMM, 2007.

[103] Joshua O’Madadhain, Jon Hutchins, and Padhraic Smyth. Prediction and ranking
algorithms for event-based network data. ACM SIGKDD Explorations Newsletter,
7(2):23–30, 2005.

[104] G. Palla, A.-L. Barabási, and T. Vicsek. Quantifying social group evolution. Nature,
2007.

[105] Jean-Jacques Pansiot. Local and dynamic analysis of internet multicast router topol-
ogy. Annales des télécommunications, 62:408–425, 2007.

[106] S.-T. Park, D. M. Pennock, and C. L. Giles. Comparing static and dynamic mea-
surements and models of the Internet’s AS topology. In IEEE Infocom, 2004.

[107] Saverio Perugini, Marcos André Gonçalves, and Edward A. Fox. A connection-centric
survey of recommender systems research. CoRR, cs.IR/0205059, 2003.

[108] Bonacich Phillip. Technique for analyzing overlapping memberships. Sociological
Methodology, 4, 1972.

[109] C. Prieur, D. Cardon, J.S. Beuscart, N. Pissard, and P. Pons. The stength of weak
cooperation: A case study on flickr. Computing Research Repository, 2008.

[110] Robert J J. Prill, Pablo A A. Iglesias, and Andre Levchenko. Dynamic properties of
network motifs contribute to biological network organization. PLoS Biol, 3(11):1881–
1892, 2005.

[111] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and J. Riedl. Grouplens: An open
architecture for collaborative filtering of netnews. In ACM Conference on Computer
Supported Collaborative Work Conference, 1994.

[112] Paul Resnick and Hal Varian. Recommender systems. Communications of the ACM,
40(3):56–58, 1997.

[113] J. M. Roberts. Correspondence analysis of two-mode network data. Social Networks,
22:65–72, 2000.

[114] G. Robins and M. Alexander. Small worlds among interlocking directors: Network
structure and distance in bipartite graphs. Computational & Mathematical Organi-
zation Theory, 10, May 2004.

[115] Camille Roth and Paul Bourgine. Epistemic communities: Description and hierarchic
categorization. Mathematical Population Studies, 12:107–130, 2005.

References 123

[116] Walid Saddi and Fabrice Guillemin. Measurement based modeling of edonkey peer-
to-peer file sharing system. Managing Traffic Performance in Converged Networks,
pages 974–985, 2007.

[117] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18, 1975.

[118] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill Book Company, 1986.

[119] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement study
of peer-to-peer file sharing systems. In Storage and Retrieval for Image and Video
Databases, 2002.

[120] A. Scherrer, P. Borgnat, E. Fleury, J.-L. Guillaume, and C. Robardet. Description
and simulation of dynamic mobility networks. Computer Network, 52:2842–2858,
2008.

[121] Fabian Schneider, Anja Feldmann, Balachander Krishnamurthy, and Walter Will-
inger. Understanding online social network usage from a network perspective. In
Internet Measurement Conference, pages 35–48, 2009.

[122] Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across large networks.
IEEE/ACM Trans. Netw., 12(2):219–232, 2004.

[123] John Skvoretz and Katherine Faust. Logit models for affiliation networks. Sociological
Methodology, 29:253–280, 1999.

[124] Ralf Steuer, Adriano Nunes Nesi, Alisdair R. Fernie, Thilo Gross, Bernd Blasius, and
Joachim Selbig. From structure to dynamics of metabolic pathways : application to
the plant mitochondrial TCA cycle. Bioinformatics, 23(11), 2007.

[125] Alina Stoica and Christophe Prieur. Structure of neighborhoods in a large social-
network. In IEEE International Conference on Social Computing (SocialCom’09),
2009.

[126] Steven H. Strogatz. Exploring complex networks. Nature, 410:268–276, 2001 2001.

[127] D. Stutzbach and R. Rejaie. Improving lookup performance over a widely-deployed
dht. INFOCOM 2006. 25th IEEE International Conference on Computer Commu-
nications. Proceedings, pages 1–12, April 2006.

[128] Pierre Ugo Tournoux, Jérémie Leguay, Marcelo Dias de Amorim, Farid Benbadis,
Vania Conan, and John Whitbeck. The accordion phenomenon : Analysis, charac-
terization, and impact on dtn routing. In Proceedings of the 28rd Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM), pages
1116–1124, 2009.

[129] Tomasz Tylenda, Ralitsa Angelova, and Srikanta Bedathur. Towards time-aware link
prediction in evolving social networks. In Proceedings of the 3rd Workshop on Social
Network Mining and Analysis (SNA-KDD ’09), 2009.

[130] C. J. van Rijsbergen. Information Retrieval. Butterworths, 1979.

[131] A. Vázquez, R. Dobrin, D. Sergi, J. P. Eckmann, Z. N. Oltvai, and A. L. Barabási.
The topological relationship between the large-scale attributes and local interaction.
patterns of complex networks, 101:17940–17945, 2004.

[132] Fabien Viger and Matthieu Latapy. Random generation of large connected simple
graphs with prescribed degree distribution. In proceedings of the 11-th international
conference on Computing and Combinatorics (COCOON’05), 2005.

[133] S. Voulgaris, A.M. Kermarrec, L. Massoulié, and M. Van Steen. Exploiting semantic
proximity in peer-to-peer content searching. In In 10th International Workshop on
Future Trends in Distributed Computing Systems (FTDCS 2004), Suzhu, 2004.

[134] Chao Wang, Venu Satuluri, and Srinivasan Parthasarathy. Local probabilistic models
for link prediction. Data Mining, IEEE International Conference on, 0:322–331, 2007.

[135] S. Wasserman and K. Faust. Social network analysis. Cambridge University Press,
1994.

[136] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature,
393(6684), jun 1998.

[137] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’ net-
works. Nature, 393:440–442, April 1998.

[138] Sholom M. Weiss, Sholom M. Weiss, Nitin Indurkhya, and Nitin Indurkhya.
Lightweight collaborative filtering method for binary encoded data. In Proceedings
of the Fifth European Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD), 2001.

[139] Demetris Zeinalipour-yazti and Theodoros Folias. Quantitative analysis of the
gnutella network traffic. Technical report, Department of Computer Science Uni-
versity of California, 2002.

[140] Katharina Zweig and Michael Kaufmann. A systematic approach to the one-mode
projection of bipartite graphs. Social Network Analysis and Mining, pages 1–32,
2011. 10.1007/s13278-011-0021-0.

Structure et dynamique des graphes de terrain bipartis :
liens internes et prédiction de liens

Résumé.

Beaucoup de graphes de terrain comme les relations acteur-film ou fichier-fournisseur sont
modélisables par des graphes bipartis, dont les nœuds sont divisés en deux ensembles avec des
liens entre les nœuds de différents ensembles seulement. Cependant, des méthodes manquent
actuellement pour analyser correctement ces graphes, la plupart des méthodes existantes étant
conçues pour des graphes classiques. Une approche courante, mais limitée, consiste à transformer
les graphes bipartis en graphes classiques, par un procédé appelé projection. Cependant ceci en-
trâıne une perte importante d’informations. Nous introduisons dans cette thèse les liens internes,
et les proposons comme une nouvelle notion importante pour analyser les graphes de terrain
bipartis : elle permet de mesurer la redondance dans ces graphes, et de mesurer la perte d’in-
formation entre un graphe biparti et ses projections. Nous montrons en étudiant différents jeux
de données que les liens internes sont très fréquents, et que les statistiques associées permettent
de souligner leurs ressemblances et leurs différences avec les graphes bipartis aléatoires. Ensuite,
nous montrons que nous pouvons tirer profit de cette notion pour modéliser les graphes de terrain
bipartis et les stocker dans un format compact.

La plupart des graphes de terrain sont de plus dynamiques, c’est-à-dire que leur structure
évolue au fil du temps par l’ajout et/ou le retrait de nœuds et/ou de liens. L’étude de la dy-
namique des graphes de terrain peut s’aborder par le problème de la prédiction de nouveaux

liens dans ces graphes. Plusieurs travaux ont étudié le problème de la prédiction de liens dans les
graphes classique (non-bipartis). Toutefois, leurs méthodes ne sont pas directement applicables
aux graphes bipartis ou sont inappropriées. Nous proposons une approche basée sur les liens in-
ternes pour la prédiction dans les graphes bipartis. Nous montrons que notre méthode fonctionne
très bien, beaucoup mieux que l’approche de recommandation classique.

Mots clés. graphes de terrain, graphes bipartis, projection, liens internes, stockage de graphe,
analyse de graphe, dynamique de graphe, prédiction de liens.

